Windows. Железо. Интернет. Безопасность. Программы
  • Главная
  • Интернет
  • Принципы построения волоконно-оптических гироскопов. Принцип работы оптических гироскопов Волоконно оптические гироскопы принципы схемотехники

Принципы построения волоконно-оптических гироскопов. Принцип работы оптических гироскопов Волоконно оптические гироскопы принципы схемотехники

Большинство конструкций ВОГ реализуют схему кольцевого оптического гироскопа нерезонансного типа с источником излучения, находящимся вне кольцевого многовиткового оптического контура, в котором проявляется вихревой эффект Саньяка. Это обстоятельство, а также технологические достижения последних лет в области разработки высококачественного оптоволокна, твердотельных полупроводниковых источников света, элементов интегральной оптики и др. предопределяют ряд достоинств ВОГ по сравнению с ЛГ. К ним следует отнести простоту конструкции с твердотельным выполнением (в перспективе полностью на гибридных интегральных микроэлементах), меньшую массу, габариты и стоимость. Современные конструкции ВОГ уже практически сопоставимы по точности с ЛГ. Все это определяет большие перспективы применения ВОГ в БИНС, в частности, для БПЛА.

На рис. 5.14 представлена принципиальная схема ВОГ.

Излучение источника света разделяется в расщепителе на две волны и , которые поступают в противоположные концы катушки оптического волокна, распространяются по ней в противоположных направлениях, рекомбинируют на расщепителе и смешиваются в фотоприемнике, где интерферируют. На выходе фотоприемника – фототок , линейно связанный с интенсивностью света на его входе. При отсутствии вращения оптического контура обе волны, распространяясь по нему, проходят одинаковый путь, и разность фаз волн и на фотоприемнике отсутствует. При вращении оптического контура с угловой скоростью эти волны проходят разные оптические пути, причем разность путей 2ΔL на длине одного витка катушки оптического волокна определяется соотношением (5.36). Разность путей порождает разность времен прихода волн на фотоприемник и, следовательно, соответствующую разность фаз электромагнитных колебаний Δφ c , пропорциональную угловой скорости (см. 5.41)

где индекс " " означает, что разность фаз Δφ c возникает за счет эффекта Саньяка; - число витков катушки оптического волокна; - площадь, охватываемая витком катушки; R – радиус витка; L- длина волокна.

Из (5.54) следует выражение для масштабного коэффициента К ВОГ

В известных конструкциях ВОГ величина К может составлять (1…40)

Теперь, на основе (5.51), имея в виду, что разность частот колебаний , угол расхождения лучей , получим для интенсивности света в фотоприемнике:

а для тока на выходе фотоприемника:

где - квантовая эффективность фотоприемника; - заряд электрона; - постоянная Планка; - частота излучения; - амплитуда фототока.

Согласно (5.54), (5.56), приращение фототока определяет угловую скорость вращения основания . Практическая реализация этого принципа измерения требует прежде всего таких схемно-конструктивных решений ВОГ, в которых обеспечивается свойство взаимности, при наличии которого встречные волны при проходят одинаковые оптические пути, сохраняя определенное состояние поляризации и форму волнового фронта. С этой целью в конструкциях катушки ВОГ часто используют одномодовое, сохраняющее поляризацию волокно, а излучение в катушку вводят и выводят из нее через одномодовый, фильтр, включающий, в частности, волоконный одномодовый пространственный фильтр и поляризатор (рис. 5.15) .

Следует отметить, что наличие в этой схеме ВОГ двух расщепителей дополнительно выравнивает фазы волн , которые дважды проходят через расщепители и дважды от них отражаются, в то время как в невзаимной схеме ВОГ на рис. 5.14 волна проходит через расщепитель дважды, а дважды от него отражается с соответствующим скачком фазы. Характерные параметры катушки одномодного оптического волокна ВОГ составляют: диаметр сердцевины волокна – 7 мкм, полный диаметр волокна с защитным покрытием – 250 мкм, длина волокна – 1000 м и более, потери в волокне – 0,2 дБ/км при длине волны 1,55 мкм. В качестве источников излучения используются лазерные диоды, светодиоды и суперлюминисцентные диоды; в качестве фотоприемников – полупроводниковые и лавинные фотодиоды .

Схема на рис. 5.15 – схема минимальной взаимной конфигурации. В соответствии с (5.54), (5.55) зависимость интенсивности от саньяковской разности фаз Δφ c носит косинусоидальный характер (рис. 5.16), причем собственно Δφ c весьма мала.

Так, например, применительно к ВОГ, в котором используется катушка с радиусом 0,1 м и длиной волокна 1000 м при скорости вращения разность фаз Δφ c =10 -5 рад . Очевидно в этом случае, когда рабочая область на характеристике I(Δφ c) находится вблизи точки Δφ c = 0, крутизна преобразования Δφ c , а следовательно и , в информационный сигнал очень мала. Кроме того, при вариациях , как видно из (5.55), имеет место аддитивная погрешность (дрейф нулевого сигнала).

Для повышения чувствительности ВОГ между встречными волнами искусственно вводят разность фаз Δφ c =π ⁄2; в этой точке крутизна характеристики I(Δφ c) - максимальна. На практике с учетом минимизации отношения сигнал/шум величину смещения Δφ c часто выбирают в диапазоне π⁄2< Δφ c < 3π⁄4 . Введение разности фаз обычно осуществляют путем размещения на одном из входов в катушку фазового модулятора. Наибольшее распространение получила схема с использованием взаимного фазового модулятора (рис. 5.17).

Собственно фазовый модулятор, например, представляет собой несколько витков оптоволокна, намотанного на пьезокерамическую трубку. Модулирующее напряжение, поступающее от задающего генератора и деформирующее трубку периодически изменяет длину оптоволокна и его показатель преломления, в результате чего периодически изменяется оптический путь волны, проходящей через модулятор, и возникает искусственное приращение ее фазы. Это приращение выбирается равным . В соответствии с рис. 5.17 модуляция фазы волны , распространяющейся в катушке по часовой стрелке, происходит с временным опережением по отношению к модуляции фазы волны , где - время обхода катушки. Выбирая в качестве полупериода модуляции, обеспечивают периодическое изменение разности фаз Δφ М с амплитудой .

Рис. 5.18 иллюстрирует процесс фазовой модуляции встречных волн в ВОГ по прямоугольному закону и соответственно процесс модуляции интенсивности света в фотоприемнике. При модуляция интенсивности света отсутствует.

При она имеет место, причем для интенсивностей на рис. 5.18 справедливо:

Глубина модуляции ∆I :

Выходной сигнал, пропорциональный (5.57), формируется в демодуляторе (рис. 5.17). Существенно то, что, помимо обеспечения максимальной крутизны преобразования Δφ c в информационный сигнал, в этой схеме ВОГ исключается аддитивная погрешность, порождаемая вариациями , коэффициентами усиления в электронной цепи обработки сигнала и амплитуды модуляции, но сохраняется мультипликативная погрешность – вариации масштабного коэффициента и его нелинейность.

Следует отметить, что во взаимном фазовом модуляторе часто используется косинусоидальная модуляция. В этом случае Δφ M =Δφ MO cosω M t где - соответственно амплитуда и частота модуляции . Тогда на основе (5.56) получим:

Разложение правой части (5.58) в ряд по бесселевым функциям первого рода дает:

где - бесселевы функции нулевого, первого, второго и третьего порядка соответственно.

Для , в частности, имеем:

причем своего максимума достигает своего максимума, равного 0,53, при .

Осуществляя демодуляцию на частоте , получим согласно (5.59) выходной сигнал, пропорциональный 2I 0 J 1 (φ мо)sin∆φ с ; при этом собственно частота модуляции составляет .

С целью уменьшения уровня мультипликативных погрешностей, обеспечения линейности его выходной характеристики в широком диапазоне измеряемых угловых скоростей ВОГ выстраивают по компенсационной схеме (схема с ²обнулением² саньяковской разности фаз Δφ c ). Для этого в оптическом контуре распространения встречных волн необходимо обеспечивать дополнительную искусственную разность фаз Δφ М (²сигнал² обратной связи) таким образом, чтобы выполнилось условие:

Δφ c + Δφ М =0. (5.60)

Наиболее распространенный способ формирования переменной Δφ М заключается в использовании, например, пьезокерамического фазового модулятора, как и ранее расположенного на входе в катушку оптического волокна, на который, в рассматриваемом случае, поступает пилообразное напряжение, скорость изменения которого пропорциональна Δφ c . На рис. 5.19 представлены характерные законы модуляции этим напряжением фаз встречных волн соответственно, причем модуляция осуществляется с запаздыванием по отношению к модуляции на время распространения волны по катушке оптического волокна.

При достижении максимального значения модулятором осуществляется скачок фазы на величину . Как видно на рис. 5.19, необходимая разность фаз Δφ М накапливается на интервалах и составляет , где - крутизна пилообразного изменения . Из (5.60) с учетом (5.54) получим:

где - оптическая длина одного витка катушки.

Тогда крутизна такова:

Фактически формирование эквивалентно сдвигу круговой частоты волн; сдвиг же циклической частоты совпадает по модулю с разностью частот , определяемой согласно (5.48) как разность частот встречных волн в резонаторе ЛГ.

Как видно (рис. 5.19), в процессе формирования компенсирующей разности фаз Δφ M =φ′ M τ O за счет "сброса" фазы на интервалах возникают стробы, порождающие погрешности ВОГ в течение времени после каждого сброса, если высота этих строб отличается от . Известны подходы к уменьшению влияния этого возмущающего фактора .

Следует отметить также, что подсчет числа "сбросов" (с учетом их знака) обеспечивает измерение приращения угла Δα поворота ВОГ на интервале измерения. Действительно, на основе (5.61) для ВОГ с катушкой диаметром из волокна с показателем преломления имеем:

(5.62)

Интегрированием (5.62) на периоде пилообразной фазовой модуляции, на котором достигается приращение фазы, равное , для соответствующего этому приращению угла поворота Δα мин получим:

(5.63)

Соотношение (5.63) определяет минимальное приращение угла поворота, регистрируемое при каждом скачке фазы на . Так, при длине волны , диаметре катушки , показателе преломления волокна приращение Δα мин составляет . Схема компенсационного ВОГ с пилообразной фазовой модуляцией представлена на рис. 5.20.

Современные конфигурации ВОГ характеризуются использованием цифровой обработки информации в его замкнутом контуре и широким применением интегральных оптических компонент (светоделителей, поляризаторов, фазовых модуляторов и др.), выполняемых по гибридной технологии, в частности на электрооптической подложке из ниобата лития. Схема высокоточного ВОГ с сохраняющим поляризацию волокном, в котором используются эти подходы, представлена на рис. 5.21.

Одним из перспективных направлений построения высокоточных ВОГ является применение в катушке сравнительно недорогого одномодового оптического волокна с деполяризацией поступающего в него оптического излучения . Перспективными являются трехосные архитектуры ВОГ с использованием ряда элементов для одновременного обслуживания всех трех измерительных каналов .

Рассмотрим теперь кратко основные источники погрешностей ВОГ. Фундаментальный порог чувствительности ВОГ регламентируется дробовым (фотонным) шумом фотоприемника, уровень которого, в свою очередь, зависит от мощности оптического излучения, поступающего в фотоприемник. При этом среднеквадратичное значение соответствующего фазового шума фотоприемника σ ∆φп определяется соотношением :

(5.64)

где - мощность входного излучения в ВОГ; ∆f - полоса пропускания системы обработки сигнала.

Из (5.64) с учетом (5.54) для среднеквадратичного значения порога чувствительности ВОГ как измерителя угловой скорости получим

(5.65)

Для ВОГ, имеющего , , , , порог чувствительности (5.65) составляет .

Одним из основных источников погрешностей ВОГ, а также основным механизмом потерь в волокне, является обратное рэлеевское рассеяние. Оно представляет собой рассеяние волн на микронеоднородностях волокна, а также за счет их отражения от дискретных оптических элементов в направлениях, противоположных основным встречным волнам. При этом когерентная составляющая обратного рассеяния интерферирует с основными волнами, что порождает флуктуации разности фаз встречных волн. Соответствующая максимальная погрешность измерения угловой скорости вращения определяется соотношением :

где - угол ввода излучения в сердцевину волокна; - коэффициент рассеяния света в волокне.

Одним из эффективных способов уменьшения этой погрешности является уменьшение степени когерентности между основными и рассеянными волнами. Это может быть достигнуто, в частности, за счет использования широкополосного источника света с малой длиной когерентности. При этом, вследствие большой разницы оптических путей основных и рассеянных волн, интерференционная картина, порождаемая их взаимодействием, размывается. В качестве широкополосных источников используют, в частности, суперлюминисцентные источники света. Отметим, что уменьшению влияния обратного рэлеевского рассеяния способствует и использование периодической фазовой модуляции.

Обозначает осреднение по времени.

Как следует из (5.67), при погрешность, порождаемая эффектом Керра, отсутствует. Она отсутствует также при выполнении условия , что достигается использованием, например, суперлюминесцентных источников.

Другим невзаимным эффектом, который приводит к появлению погрешности ВОГ, является магнитооптический эффект Фарадея. Во внешнем магнитном поле при повороте плоскости поляризации излучения изменяется показатель преломления волокна, и появляется дополнительная разность фаз встречных волн. Этот эффект не столь выражено проявляется в ВОГ с волокном, сохраняющим поляризацию. Наиболее эффективный способ уменьшения этих погрешностей – магнитное экранирование ВОГ.

Существенный вклад в погрешности ВОГ вносят также зависящие от времени температурные градиенты вдоль оптического волокна . Они порождают нестационарные изменения показателя преломления и длин участков волокна. Эти изменения приводят к невзаимности, поскольку встречные волны проходят эти участки за различное время. В предположении, что температура оптического волокна катушки изменяется линейно от его внутреннего слоя намотки к наружному, соответствующую погрешность измерения угловой скорости можно представить так:

где - температура в точке оптического волокна; ∆Т - изменение разности температур по сечению катушки; - линейный коэффициент теплового расширения волокна; δ∆Т/ δt - температурный градиент во времени.

Оценки показывают, что погрешность является одной из определяющих в ВОГ. Уменьшение может быть достигнуто за счет симметричной, относительно середины оптического контура, намотки катушки. При этом части волокна, которые отстоят одинаково от средней точки оптического контура, находятся рядом друг с другом. Это приводит к симметричному распределению температуры относительно средней точки и теоретически к исключению погрешности . Одновременно используется температурное циклирование катушки после ее намотки для стабилизации размеров и относительного положения витков, а также алгоритмическая компенсация остаточного температурного дрейфа в процессе эксплуатации ВОГ.

Помимо указанных возмущающих факторов следует отметить также вибрационные возмущения, которые порождают погрешности ВОГ через возмущение параметров оптического волокна. Возникающая при этом погрешность пропорциональна скорости изменения вибрационного ускорения с коэффициентом порядка, где - ускорение силы тяжести (НТК ²физоптика²). Существенно может быть также влияние акустических шумов через пьезооптический эффект в частотной полосе до нескольких .

В целом погрешности ВОГ характеризуются уровнем нестабильности масштабного коэффициента (главным образом температурной) и его нелинейностью, систематической составляющей дрейфа (смещение нуля) гироскопа, стабильностью дрейфа в запуске и от запуска к запуску, шумовой составляющей выходного сигнала. Существенный вклад в эти параметры вносят, естественно, не только оптические, но и электронные компоненты ВОГ.

В таблице 5.3 представлены основные характеристики ряда ВОГ отечественных компаний.

Волоконно-оптический

Гироскоп

Эрве Лефевр

(Перевод Цаплина А.И.)

Дом технологий

Бостон · Лондон

Об этом доме технологий книги постоянно в печати.

Эта книга была издана в рамках программы дом технологий в программе постоянно в печати. Книги этой программы являются копиями ранее напечатанных домом технологий книг, теперь доступны исключительно как единичные копии при запросе читателей. Для получения информации о сотнях наименований, доступных в рамках этой программы, обращайтесь в дом технологий.

Artech House, Inc. Artech House Books
685 Canton Street Portland House, Stag Place
Norwood, MA 02062 Londоn SW1E5XA
USA UK

Www.artech-house.com

ISBN: 0-89006-537-3

Artech House Publishers boston . london

Библиотека оптоэлектроники дома технологий

Брайан Гулшаф, Алан Роджерс и Генри Тейлор, редакторы серии

Обработка акустических и оптических сигналов: Основы и приложения , Панкадж Дас

Аморфные и микрокристаллические полупроводниковых устройства, оптико-электронные устройства , Ежи Kaниски и др.

Выполнение моделирования электро-оптических систем . Гэри Валдман и Джон Вуттон

Волоконно-оптические гироскопы , Эрве Лефевр

Теории поля акустических и оптических сигнал обработки устройств , Крейг Скотт

Высококогерентные полупроводниковые лазеры , Moтоичи Оцу

Введение в электро-оптические изображения и следящие системы , Халиле Сейрафи и С. Хованессиан

Введение в интегральную прозрачную оптику , С. Ирадж Найафи

Оптический контроль микроволновых устройств , Райнье Н.Саймонс Волоконно-оптические датчики, том 1: Принципы и компоненты , Джон Дакин и Брайан Кулшав.

Волоконно-оптические датчики, том II: Системы и приложения , Брайан Кулшав и Джон Дакин.

Теория оптических сетей , Ицхак Вайсман.

Принципы современных оптических систем, том I

Принципы современных оптических систем, том II , И. Андоновик и Д. Уттамхандани.

Надежность и деградация полимерных и полупроводниковых лазеров , Мицуо Фукуда.



Измерения одномодовыми оптическими волокнами: характеристика и чувствительность , Джованни Caнселиери.

Волоконно-оптические гироскопы / Эрве Лефевр.

ISBN 0-89006-537-3

1. Optical gyroscopes. I. Титул

TL589.2.06L44 1993

British Library Cataloguing in Publication Data

Fiber-optic Gyroscopes

ISBN 0-89006-537-3

© 1993 ARTECH HOUSE, INC.

Canton Street

Norwood, MA 02062

Все права защищены. Напечатано и переплетено в Великобритании Энтони Роуи Ltd. Никакая часть данной книги не может быть воспроизведена или использована в любой форме или любыми средствами, электронными или механическими, включая фотокопирование, запись или какое-либо хранение информации в информационно-поисковой системе, без разрешения в письменном виде от издателя.

Международный стандартный номер книги: 0-89006-537-3

Номер карты в каталоге библиотеки конгресса: 92-28194

Софии, Шарлотте и Эллиот

"C"est un gyroscope, c"est la cle de l"Absolu"

Le Roi des Aulnes

Предисловие……………………………………………………………………….. 10 Предварительные замечания………………….…………………………………...11

Глава 1. Введение………...……………………………………………………13 Ссылки…………………………………………………………………..…………..15

Глава 2. Принципы волоконно оптического гироскопа………………….……...16

2.1. Эффект Саньяка……………………………………………….……..…...16

2.1.1.Интерферометр Саньяка…………………………………………..…16

2.1.2. Случай вещества……………………………………………….….....21

2.2. Активные и пассивные кольцевые резонаторы ………… …………..23

2.2.1. Кольцевой лазерный гироскоп (КЛГ)………………………….…..23

2.2.2.Резонирующий волоконно-оптический гироскоп (Р-ВОГ)……....26

2.3. Пассивный волоконный кольцевой интерферометр………………..….27

2.3.1. Принцип интерферометрического волоконно-

оптического гироскопа (И-ВОГ)…………………………………..27

2.3.2. Теоретическая чувствительность……………………………….…..30

2.3.3. Шум, дрейф и масштабный фактор……………………………..….34

2.3.4. Пропускная способность……………………………………………35

Глава 3. Обратимость в кольцевом волоконном интерферометре ………….…38

3.1. Принцип обратимости……………………………………………….….38

3.1.1. Обратимость распространения волны……………………….……..38

3.1.2. Обратимое поведение расщепленного луча……………….………39

3.2. Минимальная конфигурация кольцевого волоконного

интерферометра…………………………………………………….….…41

3.2.1. Взаимообратные конфигурации…………………………….………41

3.2.2. Обратимые смещения модуляции-демодуляции…………………..43

3.2.3. Характерная или основная частота………………………..……….47

3.3. Взаимность в многосветоводной схеме………………………………...55

3.3.1. Бесконечно малое поле ответвителя (или X-соединитель

или 4-портовый соединитель)…………………………………..….55

3.3.2. Y-соединение………………………………………………………..58

3.3.3. Многоволоконный подход…………………………………..…..…60

3.3.4. Гибридные архитектуры с интегральной оптикой:

оптимальные "Y-ответвление" или "Y-соединение"………….…63

3.4. Проблема взаимной поляризации……………………………….……68

3.4.1.Отказ от простого одномодового волокна……………………..….68

3.4.2. Использование волокон, сохраняющих поляризацию………..… 71

3.4.3. Использование деполяризаторов……………………………...……72

3.4.4.Использование источника деполяризации………………………....72

Глава 4. Отражение и обратное рассеяние………………..….………….…….….76

4.1. Проблема отражения…………………………………………………....76

4.1.1.Сокращение отражение с наклонным стыком…………………….76

4.1.2.Влияние когерентности источника………………………………...79

4.2. Проблема обратного рассеяния………………………………………....81

4.2.1. Когерентное обратное рассеяние………………………….………..81

4.2.2.Использование широкополосного источника………………….….81

4.2.3.Определение остаточной погрешности шума

обратного рассеяния……………………………………………..…..83

Глава 5. Анализ необратимости поляризации широкополосного

источника и достижение двулучепреломления волокон……………...86

5.1.Эффект деполяризации в двулучепреломленных

волокнах, сохраняющих поляризацию……………………………..….86

5.2.Анализ необратимости поляризации в волоконном

гироскопе, сохраняющим полную поляризацию

в конфигурации волновода……………………………………….…….89

5.2.1. Эффекты типов интенсивности……………………………………89

5.2.2. Комментарии о длине деполяризации L d

против длины корреляционной поляризации L pc …………..…..94

5.2.3. Типичные эффекты амплитуды …………………………………..98

5.3.Использование деполяризатора………………………………………...99

5.4. Оценка оптической длины когерентности поляриметрии (OCDP)

на основе сравнения путей белого света при интерферометрии..…101

Глава 6. Неустановившиеся соотношения для дрейфа и шума…….…….…...108

6.1. Эффект неустановившейся температуры………………………..…....108

6.2. Эффект акустического шума и вибрации …………………..……..…111

Глава 7. Точные эффекты необратимости…………………………………….....112

7.1. Магнитно-оптический эффект Фарадея…………………………..…...112

7.2. Нелинейный эффект Керра…………………………….……………….117

Глава 8.Оценка факторов точности…………………………………………...…123

8.1. Проблема оценки точности в интерферометрическом

волоконном гироскопе…………………………………………….…...123

8.2. Закрытая рабочая петля…………………………………………..….…124

8.2.1. Использование сдвига частоты……………………………….…...124

8.2.2. Аналоговый пилообразный фазовый сигнал или геродинная

модуляция………………………………………………....………..127

8.2.3. Цифровой пилообразный фазовый сигнал……………………….132

8.2.4. Метод цифровой обработки закрытого рабочего цикла……......139

8.3. Контроль длины волны………………………………………..………..145

8.3.1. Зависимость длины волны кольцевого

интерферометра с широкополосным источником…………….....145

8.3.2. Эффект модуляции фазы……………………………………..……148

8.3.3. Схемы контроля длины волны…………………………………....149

Глава 9. Технологии И-ВОГ……………………………………………………...153

9.1. Суммирование оптимальных условий эксплуатации………………..153

9.2. Источник…………………………………………………………….…..155

9.2.1. Суперлюминесцентный диод………………………………….…..155

9.2.2. Редкоземельное легирование волоконных источников…………156

9.3. Волоконная катушка……………………………………………….…..158

9.4. "Сердце" интерферометра………….. ………………………………....159

9.5. Детектор…………………………………………………………………160

Глава 10. Альтернативные подходы для И-ВОГ…………………………….….164

10.1. Альтернативные оптические конфигурации…………………….….164

10.2. Альтернативные схемы обработки сигналов……………………..….166

10.2.1.Схема открытой петли с использованием

многократных гармоник…………………… ……………………166

10.2.2. Вторичные гармоники обратной связи………………………....166

10.2.3. Фазовые импульсы модулирования обратной связи……………167

10.2.4. Гетеродинные и псевдогетеродинные схемы………………..….168

10.2.5. Детектирование биений с пилообразным сигналом

обратной связи………………………………………………….…170

10.2.6. Двойной пилообразный сигнал обратной связи ……………….171

10.3. Расширенный динамический диапазон с

мультипликативными источниками длин волн…………………….172

Глава 11. Резонирующий волоконно-оптический гироскоп (Р-ВОГ)………...175

11.1. Принцип работы многоволоконной кольцевой полости…………...175

11.2. Метод обработки сигнала……………………………………….…….179

11.3. Взаимодействия в кольцевом резонаторе волокна……………….…182

Глава 12. Приложения и тенденции………………………………………….….188

12.1. Настоящее состояние развития…………………………………..…...188

12.2. Тенденции на будущее и заключительные замечания…………..….190

Приложение 1. Основы оптики………………………………………………..…192

A 1.1. Оптические волны в вакууме……………………………………....192

A1.2. Поляризация оптических волн…………………………………….…196

A1.3. Распространение в диэлектрической среде………………….……...200

A1.4. Геометрическая оптика……………………………………………….209

A1.5. Граница диэлектриков: отражение, преломление и

перенос волны…………………………………………………………209

A1.6. Интерференция………………………………………………………..215

A1.7. Многоволновая интерференция…………………………………….. 220

A1.8. Дифракция и гауссовский пучок лучей………………………..…..223

A 1.9. Когеренция…………………………………………………………....227

A l.10. Двулучепреломление………..………………………………….….241

Библиография…………………………………………………………….…..246

Приложение 2. Основы одномодовой волоконной оптики……………………246

A2.1. Дискретное управление модой в многомодовом волокне………….246

A2.2. Одномодовые волокна……………………………………….……….251

A2.3. Применение стекла в одномодовых волокнах………………..…….256

A2.4. Стыковка одномодовых волокон………………………………….…258

A2.5. Двулучепреломление в одномодовом волокне……………………...266

A2.6. Поляризационно-сохраняющие волокна…………………...………..271

A2.7. Интерференция в одномодовых волокнах и

соответствующие компоненты………………………………….……280

Библиография……………………………………………………………..….285

Приложение 3. Основы интегральной оптики…………………………………..286

A3.1. Интегрированный оптический световод…………………………….286

A3.2.LiNbO 3 интегральная оптика………………………………………….290

A3.3. Протон-обменные волноводы………………………………………..295

Библиография…………………………………………………………….…..298

Приложение 4. Электромагнитная теория релятивистского эффекта

Саньяка…………………………………………………………..298

A4.1. Специальная теория относительности и электромагнетизм……….298

A4.2. Электромагнетизм во вращающейся системе отсчета…………..….308

A4.3. Случай вращения тороидального диэлектрического

волновода………………………………………………………….….311

Библиография…………………………………………………………….…..313

Символы…………………………………………………………………………...314

Предисловие

Как редактор серии, я выражаю особое удовольствие в том, что эта очень важная книга по волоконно-оптическому гироскопу завершена и опубликована. Волоконно оптический гироскоп имел особое очарование для моего друга более десяти лет. Мне повезло работать, хотя и недолго, с Эрве в Стэнфорде в начале 80-х – особенно захватывающем времени, когда была раскрыта физика гироскопа. Книга Эрве стимулировала интерес поклонников, что является уникальным для гироскопа. Ее особое очарование и проблема вытекает из необходимости понять сразу все проблемы физической оптики, волновой оптики, электроники, обработки сигнала и машиностроения.

В сообществе волоконно-оптических датчиков (или, по крайней мере, для фанатиков гироскопа) гироскоп считается вершиной достижения. Никто более квалифицированно, чем Эрве, не рассказал свою историю. Ниже приводится действительно история Эрве. Текст, содержащий достижения физики и прикладных наук, содержит текже отдельные идеи и решенияавтора. Даже инженеры с альтернативными подходами должны признать качество решений, описанных в настоящем документе. Я нахожу этот текст развивающим технику и интересным для чтения. Он отражает мужской подход и энтузиазм одного человека. Я уверен, что вы также будете разделять волнение по мере углубления в историю того, что обещает быть основой технологии навигационных систем XXI века.

Профессор Брайан Гулшав

Глазго, Шотландия

июнь 1992 года

Предварительные замечания

Пятнадцать лет исследований и разработок создали потенциал волоконно-оптического гироскопа, который сегодня считается привилегированной технологией для будущих приложений инерциальных систем управления. Его конфигурации "твердого тела" дает важнейшие преимущества по сравнению с прежними подходами, использующими вращение колеса или кольцо газовых лазеров.

Во многих компаниях в мире быстро растет интерес к волоконно-оптическому гироскопу. Разработка, производство и системы инжениринга показывают сложность проблемы, в которую вовлекаются и научно-технические сообщества, проводящие исследования. Таким образом, настало время, чтобы представить подробное описание проведенных исследований, которые были проведены для достижения практических устройств. Несмотря на относительную простоту окончательный схемы волоконно-оптического гироскопа – он остается сложным инструментом со многими источниками тонких погрешностей, которые необходимо понимать и контролировать. Предмет требует междисциплинарного подхода с участием физики, волновой оптики, оптико-электронной техники, теория обработки сигнала и электронного дизайна. Разнообразие тем является хорошим примером тщательного системного анализа, и изучение волокна гироскопа будет хорошей основой для программы теоретической и экспериментальной подготовки аспирантов в волоконной оптике и оптоэлектронике.

Чтобы помочь читателю, я включил подробные приложения, которые предоставляют информацию из оптики, одномодовый волоконной оптики и интегральной оптики, необходимую для понимания волоконного гироскопа и содержащие терминологию для общения с дизайнерами оптико-электронных компонент. Для новичка этот материал поможет избежать поиска конкретных основ, чтобы понять общий текст книги. Однако, исходя из моего собственного опыта, подготовке эти приложений оказывается полезным обзорам и для тех, кто уже участвует в предметной области. Я также попытался (за исключением добавления 4) избегать громоздких математических расчетов и формул, насколько это возможно. Многие рисунки упрощают объяснения и помогают читателю понять важные идеи, правила.

Эрве C. Лефевр Париж Франция март 1992 года

Глава 1. Введение

Законы механики показывают, что равномерное прямолинейное движение не может быть обнаружено прибором, помещенным внутри "черного ящика. С другой стороны этот прибор позволяет обнаружить линейные ускорения или вращение. Точные измерения могут быть выполнены с применением механического акселерометра и гироскопа. Это является основой инерциальной ориентации и навигации. Зная первоначальные ориентиры и положение транспортного средства, интегрирование (математическое) позволяет определить по ускорению скорость и траектории движения транспортного средства. Такие инерциальные методы полностью автономны и не нуждаются во внешних источниках: они не зависят от каких-либо эффектов или помех. За пятьдесят лет они были ключевой технологией в аэронавтике, военно-морских силах и космических системах для гражданских и военных применений.

В 1913 году Саньяк продемонстрировал, что вращение в инерциальном пространстве можно также обнаружить с применением оптической системы, которая не имеет движущихся частей. Он использовал кольцо интерферометра и показал, что вращение индуцирует разницу фаз между двумя противоположно распространяемыми лучами. Первоначальные установки, однако, были очень далеки от измерений практической ротации в связи с весьма ограниченной чувствительностью. В 1925 году Майкельсон и Гале имели возможность измерять вращения Земли с гигантским кольцевым интерферометром почти 2 км в периметре с увеличенной чувствительностью, но эффект Саньяка оставался незамеченным физиками в течение многих десятилетий, поскольку не удалось получить полезногой производительности в достаточно компактных устройствах.

Эта возможность получения гироскопа без подвижных частей для замены механических гироскопов с вращением колеса продолжает оставаться очень привлекательной, и в 1962 году Розенталь предложил повысить чувствительность с применением кольцевого лазера , в котором противоположно распространяющиеся волны многократно проходят внутри резонирующего контура вместо их однократного прохода в оригинальном интерферометре Саньяка. Сначала это было продемонстрировано Масеком и Дэвисом в 1963 году, и в настоящее время технология кольцевого лазерного гироскопа достигла своей полной зрелости и используется во многих приложениях инерциальной навигации .

Однако, в связи с огромные технологические усилия, посвященными разработке оптических влолокон с низким уровнем потерь и твердотельных полупроводниковых источников света, детекторов для телекоммуникационных приложений в течение 70-х, стало возможным использовать многоволоконные оптические катушки вместо кольцевого лазер для повышения эффекта Саньяка от нескольких рециркуляций. Предложенный Пирхером и Хепнером в начале 1967 и экспериментально продемонстрированный Вали и Шортхиллом в 1976 году волоконно-оптический гироскоп с тех пор вызвал большой научно-технический интерес, так как обеспечил уникальные преимущества благодаря своей твердотельный конфигурации.

Многочисленные публикации (770!) была посвящена теме , и наиболее значительный вклад были сведены в одном томе , что очень удобно при работе в этой области. Материалы трех конференций, специально посвященных этой теме , также дают хорошее представление о ходе реализации технологии за пятнадцать лет исследований и разработок. Важнейшим шагом стало промышленное производство продукции , предпринятое несколькими компаниями. На данном этапе представляется целесообразным представить тщательный анализ результатов этапа НИОКР, а также подчеркнуть концепции, которые возникли как предпочтительные решения.

Приложения содержат основы оптики, одномодовой волоконной оптики и интегральной оптики, облегчающие понимание волоконного гироскопа. Четвертое добавление более специализированно описывает подход электромагнетизма, объясняющий релятивистский эффект Саньяка.

[I] Sagnac, г., "L"ether lumineux demontre номинальная l"effet du жерл relatif d"ether dans ООН интерферометра en rolation uniformc," конт rendus де Г des академической науки. Vol. 95, 1913 г., стр. 708-710. Sagnac, г., "Sur la preuve de la realite де троса lumineux par I"experience де I"interferographe tournant," конт rendus де I"Acaddmie наук, том 95, 1913, pp. 1410 - 1413.

Михельсон, а. а. и н. г. Gale, журнал астрофизика, том 61, 1925, pp. 401.

Rosenlhal, а. н., "регенеративных обращения несколько интерферирующих лучей для изучения распространения света," J.O.S.A., том 52, 1962. pp. 1143-1148.

Štepánek, в. м. и D.T.M. Дэвис, "Зондирование вращения при движении волны пучка лазера по кольцу," Прикладная физика письма, Vol. 2, 1963, pp. 67-68.

Иезекииль, S. и г. е. Knausenberger, eds., "Лазерные инерциальные датчики вращения," SPIE труды, том 157, 1978.

Шоу В.В., Геа Буалочи, И.М., Редротли В.Е., Сандерс, В., Шлейш и М.О. Скалли, «Кольцевой лазерный гироскоп», обзор современной физики, том 57, 1985, стр. 61, Чоу.

Пиршер Ж. и. Ж. Хепнер, "Perfectionnemenls aux dispositifs du типа gyrometre interferomet-rique лазер," французский патентной 1.563.720, 1У67.

Вали В. Р.В. Шортхилф, "Волоконный кольцевой интерферометр," Прикладная оптика, том 15, 1976. pp. 1099-1100 (SPIE, MS8, стр. 135-136).

Смит. Р. В., "Волоконно-оптические гироскопы 1991: Библиография опубликованной литературы, "" SPIE труды, том 1585, 1991, pp. 464-503.

Смит, Р.Б., ed., "Избранные статьи по волоконно-оптически гироскопам," SPIE веха Series, Vol. MS8, 1989. Примечание: для ссылок, перечисленных в этой книге, в этот том веха, мы вставили (SPIE, MS8, pp. xx-yy).

Иезекииль, S. и х. ж. Arditty, eds., "Волоконно оптические датчики вращения и смежные технологии" отчет о первой международной конференции, короткая серия в оптические науки, Vol. 32, 1981.

Удд Е. ed., "Волоконно-оптические гироскопы: 10 юбилейной конференции," SPIE труды, том 719, 1986.

Иезекииль, S. и е. Udd, eds., «Волоконно-оптические гироскопы: XV Юбилейной конференции,» SPIE Pro ceedings, том 1585, 1991.

Глава 2. Принципы волоконно-оптического гироскопа

Эффект Саньяка

Интерферометр Саньяка

Волоконно оптический гироскоп основывается на эффекте Саньяка, который дает разность фаз ΔΦ R , пропорциональную скорости вращения Ω кольца интерферометра . Первоначальная установка Саньяка состояла из коллимированного источника с разделением луча на пластине для выделения на вводе двух световых волн, которые распространяют в противоположных направлениях вдоль замкнутого контура, определяемого зеркалами (рис. 2.1). Модель прямых полос интерференции была получена с неучетом одной ошибки, и сдвиг периферийной части интерференционных полос наблюдался как поворот всей системы. Этот сдвиг интерференционных полос соответствует разнице ΔΦ R , между двумя встречными волнами, в зависимости от площади, окружающей модель.

Это можно объяснить, рассматривая полигональный путь М 0 М 1 …M N -1 M 0 . В состоянии покоя оба противонаправленные пути равны, но при вращении вокруг центра часть пути в направлении вращения дает

увеличение на М 0 М′ 1 …M′ N -1 M N и противовращение дает снижение на М 0 М′′ 1 …M′′ N -1 M′′ N (рис. 2.2). Фактически для наблюдателя в рамках инерциального покоя точки M i двигаются по окружности радиусом R, и свет распространяется вдоль сторон многоугольника M′ i M′ i +1 или M′′ i M′′ i +1 , вместо того, чтобы вдоль M i M i +1 . В частности, в первой части сонаправленного вращения полигональный путь становится М 0 М′ 1 (рисунок 2.3). Обозначая 2θ угол M 0 OM 1 , δθ – угол M 1 OM′ 1 , L M – длину M 0 M 1 , и δL M длину приращения пути М 0 М′ 1 – М 0 М 1 , получим:

, (2.1)

Этот угол δθ первого порядка есть угол поворота во время распространения света между М 0 и М 1:

(2 2)

и так как , а площадь треугольника M 0 OM 1 есть , это дает:

. (2.3)

Явление наблюдается в состоянии покоя, где свет всегда распространяется со скоростью c; таким образом, путь приращения δL M соответствует увеличению δt + времени распространения:

(2.4)

Есть такой же рост для каждой из сторон многоугольника и противоположная вариация δt – =–δt + в противоположном направлении. Разница по времени распространения света между двумя противоположными закрытыми путями в вакууме:

(2.5)

где является суммой всех площадей треугольников (т.е. полной замкнутой площади A ). Эта разница во времени, измеренная интерферометром, дает разницу фаз:

(2.6)

где ω – угловая частота волны. Можно показать, что этот результат является общим и может быть распространен по любую ось вращения и на любой замкнутый контур, даже если они не содержатся в самолете, используя скалярное произведение А· Ω:

(2.7)

где Ω – вектор скорости вращения, и A – эквивалент вектора площади замкнутого контура, определяемый линейным интегрированием:

(2.8)

где r – радиальная координата вектора. Эффект Саньяка может быть представлен в виде потока вектора вращения Ω через замкнутую область.

Чтобы получить более глубокое понимание эффекта Саньяка, его можно считать простым случаем "идеального" круговой пути , который является пределом полигонального пути с бесконечным количеством сторон. Свет, входящий в систему, делится на две противонаправленные волны, которые возвращаются на этапе после обхода на том же пути в противоположных направлениях (Рисунок 2.4,a). Теперь, когда интерферометр вращается, наблюдатель в состоянии покоя в инерциальной системе отсчета видит свет, введенный в интерферометр на момент M (Рисунок 2.4,b) и распространяющийся со скоростью в вакууме c в противоположных направлениях; тем не менее, во время переноса t v через виток, луч перешел в точку M ", и наш наблюдатель видит, что волна в направлении вращения прошла более длительный путь, чем в противоположном направлении. Эта разница пути может быть измерена интерферометрическими средствами.

Это объяснение является простым, но мы не должны забывать основные понятия: это наблюдается в инерциальных рамках, но по-прежнему наблюдается во вращающейся системе, потому что оба в конечном счете (возвращающие противоположно направленные волны во вращающейся системе на разделитель луча) занимают место в той же точке, и может быть применен принцип причинности: если два события происходят в одной и той же точке пространства, их разность времени прохождения сохраняется (первое правило в v/c ) в любой системе отсчета. Фактически интересно сравнить эффект Саньяка с известными проблемами релятивистской кинематики, которая объясняет, что одновременность событий это не абсолютное понятие.

Давайте рассмотрим систему, состоящая из источника S размещенного на равном расстоянии от двух зеркал, М 1 и M 2 (Рисунок 2.5,a). Свет от источника раздается в противоположных направлениях, и после отражения обе волны возвращаются к источнику в то же время. Теперь, если система переместится горизонтально (Рисунок 2.5,b), наблюдатель в "лабораторной" системе будет наблюдать, во-первых, свет от зеркала М 1 , происходящий от вступающей

S

волны, а затем от другого зеркала, М 2 . Задержка между обоими мероприятиями в основном совпадает с задержкой Саньяка, если заменить круговой путь по расстоянию между источником и зеркалами и касательную скорость вследствие вращения на скорость переноса. Однако в связи с переносом оба мероприятия проводятся в двух разных точках, и принцип причинности не может быть применен. Наблюдателю в рамках движущейся системы приходится ждать возвращения света в источнике возникновения для наблюдателя, в то же время. Затем этот наблюдатель может только сделать вывод, что перемещение его или рамки, свет попадает в точку от обоих зеркал в одно и то же время. Обратите внимание, что источник также перемещается для наблюдателя в рамках "Лаборатория", и он видит, что свет возвращается из обоих направлений в одно и то же время. Это согласуется с ранее сказанным, потому что два события, происходящие в той же точке, наблюдаются одновременно в любой системе отсчета.

Примечание: Эффект Саньяка в качестве альтернативы можно интерпретировать как двойной эффект Доплера на разделителе луча. Вместо временного подхода, подробно изложенного выше, это может быть проанализировано пространственно, учитывая "замороженность" системы в данный момент (Рисунок 2.6). Наблюдатель в рамках лаборатории измеряет одну волну, передаваемую два раза с сохранением той же длины волны, а противонаправленная волна отражена дважды на движущемся разделителе,

В отличие от КЛГ в волоконно-оптических гироскопах (ВОГ) замкнутый контур образован многовитковой катушкой оптического световолокна. В этом случае при наличии вращения основания прибора с угловой скоростью Ω фазовый сдвиг φ лучей, распространяющихся по контуру в двух взаимно-противоположных направлениях (фаза Саньяка), будет определяться следующим выражением :

(2.152)
где N – число витков катушки, S – средняя площадь витка, λ – длина волны светового луча, с – скорость света. Из последнего выражения вытекает основное преимущество ВОГ над КЛГ: величина его масштабного коэффициента за счет большого числа витков световода существенно больше. Регистрируемая прибором разность фаз может составлять 10 -5 ÷ 10 -7 радиан, что соответствует угловой скорости вращения контура, равной 1 ÷ 10 -3 град/час. Кроме этого :

· в ВОГ отсутствует синхронизация противоположно бегущих лучей вблизи нулевого значения угловой скорости вращения, что позволяет измерять очень малые угловые скорости, без необходимости конструировать сложные в настройке устройства смещения нулевой точки;

· конструкция ВОГ целиком выполняется в виде твер­дого тела (в перспективе полностью на интегральных оп­тических схемах), что облегчает эксплуатацию и повышает надежность по сравнению с КЛГ;

· ВОГ измеряет скорость вращения, в то время как КЛГ фиксирует приращение скорости;

· конфигурация ВОГ дает возможность «чувствовать» реверс направления вращения.

· благодаря воз­можности создания ВОГ полностью на интегральных оп­тических схемах они имеют малые габариты и массу, а также ничтожное потребление энергии, что имеет немаловаж­ное значение при использовании ВОГ на борту;

· ВОГ имеет большой динамический диапазон измеряемых угловых скоростей (в частности, например, одним прибором можно измерять скорость поворота от 1 град/час до 300 град/с );

· в виду того, что не затрачивается время на раскрутку не существующего ротора, ВОГ практически мгновенно готов к работе;

· рассматриваемые гироскопы имеют низкую чувствительность к большим линейным ускорениям и, следовательно, работоспособны в условиях воздействия высоких ме­ханических перегрузок;

· благодаря диэлектрической природе волокна, ВОГ имеет высокую помехоустойчивость, нечувствительность к мощным внешним электромагнитным воздействиям и к проникающей гамма-нейтронной радиации, особенно в диапазоне 1,3 мкм;

Волоконные оптические гироскопы, исполняя роль датчиков угловой скорости, могут быть связаны непосредственно, без дополнительного карданового подвеса, с корпусом объекта, параметры движения которого измеряются. Это значительно упрощает конструкцию и стоимость систем управления или стабилизации, основу которой они составляют.

Рис.2.10
Механические гироскопы имеют так называемые гиромеханические ошибки, которые особенно сильно проявляются при маневрировании объекта. Эти ошибки еще более значительны, если система управления конструируется с жестко закрепленными или «подвешенными» непосредственно к телу носителя датчиками. Перспектива исполь­зования дешевого оптического датчика вращения, который способен работать без гиромеханических ошибок особенно в инерциальной системе управления, есть еще одна причина особого интереса к оптическому гироскопу.

Волоконная гироскопия на эффекте Саньяка развивалась в двух направлениях, отличающихся использованием резонансных и нерезонансных интерференционных схем. В основе нерезонансных схем лежит волоконный кольцевой интерферометр (ВКИ) Саньяка, в котором измеряется разность фаз встречных волн. В резонансных схемах используется пассивный многопроходной волоконный кольцевой резонатор, в котором измеряется смещение резонансных частот встречных волн или их разность фаз в области резонанса. Резонансный ВОГ в силу ряда причин значительно менее исследован и практически не производится. Поэтому дальнейшее внимание сосредоточим на рассмотрении интерференционного ВОГ.

Рис. 2.42
Волоконный кольцевой интерферометр представляет собой многовитковую катушку, выполненную из одномодового оптического волокна. В отличие от многомодового волокна она обеспечивает качественную передачу светового сигнала, имеющего только один тип (одну моду) распределения параметров электромагнитного излучения (светового потока). Конструктивно эти типы волокон различаются только диаметром сердечника (рис. 2.42) - световедущей части, внутри которой коэффициент преломления чуть выше, чем в периферийной части - оболочке. Различие коэффициентов преломления обеспечивает распространение света внутри сердечника. У одномодовых волокон диаметр сердечника составляет примерно 5-10 мкм, что создает трудности при соединении волокон этого типа и введении в них светового луча лазера. Многомодовые волокна имеют больший диаметр сердечника (примерно 50 мкм), что существенно облегчает их соединение друг с другом. Однако при использовании оптических волокон для когерентных измерений, когда из этих волокон формируется интерферометр, важным преимуществом одномодовых волокон является возможность передачи информации о фазе оптической волны, что неосуществимо с помощью многомодовых волокон.

К общим достоинствам оптических волокон следует отнести:

· широкополосность (предполагается до нескольких десятков терагерц);

· малые потери (минимальные 0,154 дБ/км);

· малый (около 125 мкм) диаметр;

· малая (приблизительно 30 г/км) масса;

· эластичность (минимальный радиус изгиба 2 мм);

· механическая прочность (выдерживает нагрузку на разрыв примерно 7 кг);

· отсутствие взаимной интерференции;

· безындукционность (практически отсутствует влияние электромагнитной индукции);

· взрывобезопасность (гарантируется абсолютной неспособностью волокна быть причиной искры);

· высокая электроизоляционная прочность (например, волокно длиной 20 см выдерживает напряжение до 10000 B);

·
высокая коррозионная стойкость, особенно к химическим растворителям, маслам, воде.

Простейшая принципиальная схема ВОГ представлена на рис. 2.43. Лазерный диод является источником света, который поступает на полупрозрачное зеркало (светоделитель), разделяющее его на два одинаковых луча, вращающиеся по волоконному контуру в противоположных направлениях. На выходе из волоконного контура лучи вновь поступают на зеркало и далее в фотодетектор и электронное устройство обработки принятого сигнала. Фотодетектор вырабатывает напряжение, пропорциональное относительному смещению фаз лучей, которое, в свою очередь, пропорционально скорости вращения контура вокруг своей оси. Электронное устройство обработки принятого сигнала вырабатывает значения измеряемой скорости и путем ее интегрирования – угла поворота контура.

Два луча, обошедшие контур в противоположных направлениях, смешиваясь в фотодетекторе образуют результирующее колебание, закон изменения напряжения которого можно записать в виде:

где - амплитуды колебаний; - частота излучения; ; ; - начальная фаза колебания; - фаза Саньяка.

Интенсивность I излучения на фотодетекторе (или величина фототока на его выходе) будет определяться следующим равенством:

Обозначив интенсивность излучения на выходе лазерного диода , а также считая, что в волоконном контуре отсутствуют потери, и, полагая, что светоделитель разделяет энергию точно поровну, найдем:

(2.155)

Тогда выражение (2.154) принимает вид:

(2.156)

I/I 0
1
Δj cC
t
Рис. 2.44
Δj с m
I/I 0m
График изменения относительной интенсивности результирующего луча в зависимости от изменения фазы представлен на рис. 2. 44. Как это следует из графика, рассматриваемый вариант построения гироскопа является не вполне удачным в связи с тем, что функция является четной и не несет информацию о знаке фазы Саньяка. Кроме того, этот прибор при измерении малых угловых скоростей имеет невысокую чувствительность (отношение I/I 0 к Δj с ), а также высокую нелинейность выходного сигнала. В том случае, если измеряемая угловая скорость является периодической функцией времени, выходной сигнал будет представлять собой совокупность четных гармоник частоты входного сигнала, причем первая из них будет иметь удвоенную частоту изменения по отношению к частоте входного сигнала.

Для устранения этих недостатков можно использовать введение начального фазового сдвига одного из лучей на величину, близкую к p/2, или компенсационный метод измерения с двойной фазовой модуляцией на высокой и низкой частотах

Морской гирокомпас

Проблема создания ГК практически неподверженного влиянию качки судна потребовала использования в качестве его чувствительного элемента гироскопа с тремя степенями свободы. Очевидно, что только такой гироскоп, имеющий совершенную систему подвеса ротора, может изолировать последний от влияния углового движения основания, на котором он установлен. Однако, указанный прибор, лишенный всяких корректирующих воздействий, не способен автоматически совмещать свою главную ось с плоскостью меридиана и, тем самым, не может быть гирокомпасом.

Очевидно, необходимо создать такую систему коррекции гироскопа, которая бы заставляла его главную ось устанавливаться в меридиан но, по возможности, не порождала бы зависимости ее движения от параметров качки судна. Простейшим образом эта задача решается путем смещения центра массы чувствительного элемента прибора вдоль наружной оси его подвеса. Рассмотрим закон движения главной оси гироскопа при наличии указанного смещения .

Будем считать, что гироскоп с тремя степенями свободы, к гирокамере ВК (рис. 1.3) которого с целью смещения его центра масс прикреплен груз Q , установлен на земной поверхности в каком-либо пункте а. Будем также полагать, что в начальный момент времени его главная ось ОА совпадает с плоскостью горизонта и направлена с запада на восток. В этих условиях сила G веса гироскопа, несмотря на наличие расстояния l между его центром тяжести и точкой подвеса О , не будет создавать относительно последней
никакого момента. Направление вектора G в данном случае будет совпадать с вертикально расположенной осью ОС наружного карданова кольца НК и, следовательно, проходить через точку О подвеса гироскопа.

Начальная ориентация гироскопа относительно земной поверхности не будет оставаться неизменной. С течением времени вследствие суточного вращения Земли место установки гироскопа будет перемещаться в пространстве. Если за вращением Земли наблюдать извне со стороны северного полюса, будет видно, что это перемещение совершается против часовой стрелки. Таким образом, по прошествии некоторого времени место установки гироскопа, совершив вместе с Землей поворот вокруг ее оси, переместится в пространстве на некоторый угол и займет новое положение, обозначенное на схеме точкой б .

В процессе описываемого перемещения гироскоп, стремящийся сохранить направление своей главной оси неизменным в пространстве, начнет приобретать все увеличивающийся наклон к горизонту. При этом восточный конец главной оси ОА будет непрерывно подниматься над горизонтом, а западный - опускаться. Вместе с гироскопом вокруг оси будет поворачиваться и груз Q. При наличии угла β между главной осью и плоскостью горизонта вектор G уже не будет проходить через точку О подвеса гироскопа, обусловливая тем самым возникновение момента M В, действующего на гироскоп относительно его внутренней оси подвеса ОВ. Нетрудно заметить, что величина момента M В определяется произведением , которое вследствие малости угла β может быть принято равным Glβ и, следовательно, считаться пропорциональной углу β. Направление вектора момента M В совпадает с положительным направлением оси 0В, т.е. будет перпендикулярно плоскости чертежа и указывать на читателя.

Как только момент М В начнет действовать на гироскоп, возникнет прецессионное движение вокруг наружной оси ОС. В результате главная ось ОА гироскопа, поворачиваясь вокруг оси ОС с угловой скоростью , станет приближаться к плоскости географического меридиана. При этом вектор кинетического момента Н гироскопа будет двигаться в направлении к северному географическому полюсу, как это показано на схеме в положении в . Как видим, описанный гироскоп приобретает способность устанавливаться в меридиан и, тем самым, превращается в компас с маятниковой коррекцией. Нередко его называют гирокомпасом с непосредственной коррекцией.

Поскольку, стремясь к меридиану, гироскоп одновременно движется по двум углам α и β , представляет интерес выяснить траекторию движения его главной оси. Для этого обратимся к уравнениям (2.20 ), описывающим поведение гироскопа с тремя степенями свободы, основание которого вращается в пространстве с угловыми скоростями ω хо , ω уо и ω zo . Если учесть, что в рассматриваемом случае

, (1.1)
где , то указанные уравнения можно переписать в следующем виде:

(1.2)

Так как в качестве базовой системы координат нами была выбрана горизонтальная система с географической ориентацией осей (рис. 2.20 ), указанные угловые скорости будут определяться равенствами (2.38 ), в которых относительные скорости :

Подставляя равенства (1.3) в уравнения (1.2) и принимая во внимание, что на практике << , найдем:

(1.4)

Как уже было показано ранее (параграф 2.7 ), члены уравнений (1.4), зависящие от угловых ускорений и определяют незначительные по своей амплитуде нутационные колебания, имеющие достаточно высокую частоту, которые, как правило, не регистрируются измерительными системами. Поэтому, анализируя указанные уравнения, ограничимся рамками прецессионной теории, которая не учитывает нутационное движение гироскопа и дает основание для исключения из рассмотрения первых слагаемых этих уравнений. В результате они примут вид:

(1.5)

Исключив из полученных уравнений также переменную β , будем иметь:

, (1.6)

(1.7)

Решение уравнения (1.6) может быть записано в виде:

где С 1 и С 2 – произвольные постоянные, зависящие от начальных условий.
Продифференцировав равенство (1.8) и подставив значение в первое уравнение системы (1.5), найдем выражение для угла :

Зависимости (1.8) и (1.9) характеризуют собой изменение во времени углов отклонения главной оси гироскопа относительно плоскостей меридиана и горизонта.

Будем полагать, что в начальный момент времени главная ось гироскопа лежала в плоскости горизонта [β(0)= 0] и была отклонена от меридиана на угол а н [а(0)=а н ]. Учитывая это нетрудно найти значения произвольных постоянных С 1 и С 2 :

(1.10)

Подставляя значения указанных постоянных в выражения (1.8) и (1.9), будем иметь:

(1.11)

Упростим полученное выражение. Для этого введем обозначения:

(1.13)

Подставляя равенства (1.12) в (1.11), найдем: (1.14)

Полученные зависимости показывают, что ГК, основание которого установлено неподвижно на земной поверхности, совершает незатухающие гармонические колебания относительно плоскости меридиана с амплитудой (рис. 1.4) и плоскости, наклоненной к плоскости горизонта на угол

(1.15)

Амплитуда последних, как это следует из равенства (1.14), определяется следующим выражением:

(1.16)

Величина β 0 характеризует тот необходимый угол наклона главной оси гироскопа, при котором обеспечивается непрерывное движение этой оси в мировом пространстве вслед за плоскостью земного меридиана. Действительно, Земля вращается вокруг местной вертикали ОС с угловой скоростью, равной

Для того чтобы вызвать такое же вращение оси гироскопа в пространстве, необходимо создать постоянно действующий относительно внутренней оси ОВ подвеса его ротора момент внешней силы, который должен быть равен произведению Указанный момент возникает при отклонении оси гироскопа от вертикали. Его величина равна . Таким образом, для того, чтобы ГК мог отслеживать вращение в пространстве плоскости меридиана, должно иметь место равенство:

, (1.17)

из которого и вытекает равенство (1.12).

Эллиптический характер траектории движения главной оси гироскопа на картинной плоскости Q обусловлен наличием фазового сдвига колебаний, происходящих относительно осей его подвеса, на угол 90 0 аналогичного тому, который был представлен на рис. 2.21 .

Период Т 0 незатухающих колебаний гироскопа около положения равновесия в соответствии с равенствами (1.11) и (1.7) определяется следующим выражением:

(1.18)

Из полученного выражения вытекает, что значение Т в процессе плавания не остается постоянным, а зависит от широты места судна. В связи с тем, что величина кинетического момента Н , как правило, достаточно велика, на практике рассматриваемый период составляет несколько десятков минут, что значительно превышает период качки судна. Это существенно повышает устойчивость главной оси гироскопа при работе в различных условиях эксплуатации. Однако рассматриваемые прецессионные колебания порождают периодическую ошибку в показаниях ГК, для исключения которой их необходимо погасить. С этой целью компас следует снабдить тем или иным демпфирующим устройством. Характер движения главной оси гироскопа и положение ее устойчивого равновесия в данном случае зависит от вида используемого демпфирующего устройства. Подробнее этот вопрос будет рассмотрен ниже.

Подводя итог сказанному, отметим, что для построения морского ГК следует:

§

Важно!
взять за основу гироскоп с тремя степенями свободы;

§ снабдить его устройством, создающим относительно внутренней оси подвеса ротора момент, пропорциональный углу отклонения главной оси гироскопа от плоскости горизонта;

§ снабдить прибор устройством, демпфирующим прецессионные колебания гироскопа, возникающие в процессе его установления в меридиан.

Волоконно-оптические гироскопы (ВОГ) можно разделить на два класса :

фазовые, в которых измеряется сдвиг фазы обусловленный вращением;

резонаторные (или двухчастотные), в которых измеряется расщепление резонансных частот пассивного кольцевого волоконного резонатора, пропорциональное угловой скорости.

Первый тип ВОГ представляет собой многовитковый волоконный аналог классического интерферометра Саньяка (рис. 3.31). Конструкция ВОГ на основе катушки волокна позволяет существенно повысить чувствительность прибора без увеличения его габаритных размеров. В этом случае площадь, охватываемая контуром,

где - число витков в катушке; а - площадь, охватываемая одним витком. Выражение (3.96) для принимает вид

Для цилиндрической катушки радиуса

Важным является существенное отличие фазовых ВОГ от других датчиков интерферометрического типа. Как показано в п. 3.4, в многомодовых интерферометрах набег фазы световой волны под действием измеряемых физических полей существенно зависит от номера моды. Саньяковский сдвиг фазы оказывается в первом приближении одинаковым для всех мод в многомодовом волоконном интерферометре. Это теоретически ясно из выражений (3.96) и (3.101), в которые не входит показатель преломления среды. Точный расчет подтверждает эти соображения . Таким образом в фазовых ВОГ могут использоваться многомодовые волоконные световоды, однако при этом необходимо, чтобы световые потоки, распространяющиеся во встречных направлениях, имели одинаковый модовый состав и условия их ваода в световод, были строго одинаковы .

В рассматриваемой нами (рис. 3.31) простейшей схеме ВОГ с двумя делительными зеркалами интенсивность света на входе фотодетекторов (без учета потерь в элементах ВОГ)

где - интенсивность света на выходе источника излучения.

Несложные операции с электрическими сигналами на выходах фотодетекторов позволяют получить выходной сигнал

где - коэффициент пропорциональности, определяемый параметрами фотодетекторов и электронных схем. Простота обработки исключает зависимость выходного сигнала от флуктуаций мощности источника излучения.

Основной недостаток этой схемы, исследовавшейся на первых этапах создания ВОГ, - низкая чувствительность при малых скоростях вращения. Из определения чувствительности ВОГ

очевидно, что при малых скоростях вращения числовое значение мало.

Максимум чувствительности достигается в схемах, использующих дополнительный фазовый сдвиг между встречными волнами . В этом случае

Таким образом, чувствительность гироскопа становится максимальной при При малых скоростях вращения выходной сигнал прямо пропорционален угловой скорости:

Часто используется понятие «масштабный коэффициент гироскопа». Под ним подразумевают коэффициент, характеризующий соотношение между угловой скоростью и измеряемой величиной. В случае фазового ВОГ с «подставкой» угловая скорость и выходной сигнал (ток, напряжение) связаны соотношением

Повышение чувствительности фазовых ВОГ за счет заданной фазовой «подставки» однако, не решает проблемы. Необходимо создать прибор, работающий в широком диапазоне с минимальными случайными и систематическими погрешностями и низким порогом чувствительности. С этой целью в реальных конструкциях принимаются специальные меры для устранения основных причин погрешностей и расширения динамического диапазона

Теоретически, как и во всех волоконно-оптических датчиках, основные ограничения на порог чувствительности и точность ВОГ налагает наличие дробовых шумов фотодетектора, однако в действительности более существенную роль играет ряд других физических процессов. В первую очередь - явления, приводящие, как и эффект Саньяка, к невзаимному сдвигу фаз встречных световых волн.

Сдвиг фаз во внешнем магнитном поле, обусловленный хорошо известным эффектом Фарадея, пропорционален величине где - элементарный участок оптического контура; Н - напряженность магнитного поля, действующего на этот участок; V - постоянная Верде. Если Н - величина, постоянная для всего контура, то фарадеевский сдвиг фаз равен нулю, так как Наличие градиента магнитного поля или различие в

поляризациях встречных волн делают этот сдвиг отличным от нуля. Магнитная экранировка и использование волокон, сохраняющих поляризацию, ослабляют влияние эффекта Фарадея.

Двулучепреломление в волоконном световоде является одним из основных источников ошибок и шумов в ВОГ. Эллиптичность волокна, механические напряжения и другие подобные причины снимают вырождение по поляризации в одномодовом волокне В результате ортогональные линейно-поляризованные моды распространяются с разными скоростями. Само по себе это явление не должно приводить к невзаимному сдвигу фаз. Однако в реальных волокнах случайное расположение участков с двойным лучепреломлением и эллиптичностью сердцевины, а также связь между ортогонально-поляризованными модами приводят к тому, что эффективные оптические пути встречных волн интерферометра становятся различными. Наведенное двулучепреломление и связь между ортогонально-поляризованными модами сильно зависят от внешних акустических и тепловых флуктуаций. Сдвиг нуля ВОГ, обусловленный двулучепреломлением, и поляризационный шум значительно уменьшаются при использовании световодов, сохраняющих поляризацию . Необходим также контроль состояния поляризации в ответвителях на входе и выходе интерферометра .

К невзаимному сдвигу фаз в ВОГ приводит и высокочастотный эффект Керра , известный из нелинейной оптики. Суть его состоит в том, что показатель преломления среды зависит от интенсивности распространяющегося в ней света. Если интенсивности встречных световых волн не равны, постоянные их распространения становятся различными. Этот эффект проявляется очень слабо, однако его необходимо учитывать при создании высокоточных ВОГ. Один из путей минимизации влияния эффекта Керра состоит в использовании электронной системы автоматического выравнивания интенсивностей встречных волн , что, однако, значительно усложняет прибор. Другое решение проблемы заключается в использовании источников излучения с достаточно широким спектром (суперлюминесцентных диодов). При этом усредненный по спектру сдвиг фаз равен нулю .

К числу причин, влияющих на невзаимный сдвиг фаз, необходимо отнести и нестабильность заданной фазовой «подставки». В реальных устройствах ее величина зависит от изменений внешних условий и поляризации вводимого в интерферометр излучения .

Особое место среди факторов, ухудшающих характеристики ВОГ, занимают релеевское рассеяние в световоде и отражение от элементов гироскопа . Эти процессы не влияют на когерентность излучения, но фазы рассеянного и отраженного света могут существенно меняться при изменении внешних условий, а также при акустических и тепловых флуктуациях в пространстве, окружающем световод. Рассеянные и отраженные волны

интерфирируют со встречными волнами и сдвиг фаз, вызванный вращением, становится неразличимым на фоне этой интерференции. Эффективный способ снижения уровня шума, обусловленного рассматриваемыми факторами, состоит в уменьшении длины когерентности излучения источника. Разность хода встречных лучей, определяемая эффектом Саньяка, достаточно мала. Если выбрать источник с широким спектром, так что длина когерентности будет лишь ненамного больше влияние значительной части отраженного и рассеянного света устраняется. Лишь та его часть, которая попадает на фотодетектор с задержкой, не превышающей участвует в формировании шумового сигнала.

Рис. 3.32 Волоконно-оптический гироскоп: 1 - волоконная катушка; 2 - матрица из четырех направленных ответвителей

Безусловно, необходимо и уменьшение числа отражающих поверхностей в ВОГ, т. е. числа элементов в объемном исполнении.

Динамический диапазон фазовых ВОГ ограничивает прежде всего то обстоятельство, что выходной сигнал есть тригонометрическая (т. е. отнюдь не линейная) функция сдвига фаз Линейный участок функций или мал. Кроме того, понятные трудности связаны с периодичностью этих функций. В результате для создания ВОГ с приемлемым динамическим диапазоном необходима специальная обработка его выходного сигнала.

В настоящее время известен ряд перспективных схемных решений фазовых ВОГ , из которых мы выделим те, которые в комплексе решают проблемы уменьшения уровня шумов, погрешностей, повышения чувствительности и расширения динамического диапазона.

В схеме гироскопа, приведенной на рис. 3.32, используется квадратурное детектирование с помощью матрицы из четырех пассивных направленных ответвителей, модуляция масштабного коэффициента и электронная обработка сигнала . Такая схема позволяет в значительной мере исключить ошибки, вызванные невзаимными сдвигами фаз различной природы, линеаризовать выходную характеристику ВОГ (расширить динамический диапазон). Кроме того, регистрация сигнала по переменному току с использованием фильтров или резонансных усилителей приводит к существенному уменьшению влияния шумов источника излучения и регистрирующих схем (эти шумы зависят от частоты как

Направленные ответвители, изготовленные путем сплавления волокон, исключающим их скручивание (см. гл. 4), работают,

как трехдецибельные мосты, обеспечивая при делении сдвиг фаз между световыми волнами. Как видно из рис. 3.32, использование матрицы ответвителей позволяет получить на выходах четырех фотодетекторов нормализованные сигналы вида

Сдвиг фазы в направленном ответвителе всегда отличается от на некоторую величину а которая в силу слабой зависимости параметров ответвителя от внешних условий может зависеть от времени. Кроме того, по причинам, изложенным выше, в ВОГ может иметь место дополнительный сдвиг фаз встречных волн приводящий к систематическим и случайным ошибкам в измерениях. С учетом существования величин выражения (3.105) принимают вид:

Как уже отмечалось, в рассматриваемой схеме осуществляется модуляция масштабного коэффициента ВОГ. С этой целью можно модулировать одну из двух величин, входящих в основное уравнение ВОГ -радиус катушки или длину волны К:

При этом величина становится функцией времени. Заметим, что модуляция или К практически не приводит к модуляции Модуляция легко осуществляется, если волоконная катушка намотана на пьезоэлектрический цилиндр, модуляция длины волны источника излучения К - при использовании полупроводникового -лазера (см. гл. 4).

В качестве примера рассмотрим случай, когда меняется по закону

причем Тогда

Ограничиваясь первым порядком величины получаем

где - саньяковский сдвиг фазы,

Электронная система обработки сигналов осуществляет следующие операции:

Подставив значения из уравнений (3.106), получаем, что

Величина представляющая собой отклонение заданной фазовой «подставки» от значения обычно медленно меняется во времени (в соответствии с изменениями температуры) , поэтому и третье слагаемое в выражении (3.109) пренебрежимо малы. Дифференцируя выражение (3.108), получаем, что

В реальных условиях при современной технологии , поэтому на выходе фильтра, настроенного на частоту модуляции получаем выходной сигнал

Таким образом, амплитуда сигнала на частоте модуляции прямо пропорциональна и соответственно угловой скорости вращения, при этом в значительной мере исключаются ошибки, вызванные невзаимными сдвигами фаз различной природы, и низкочастотные шумы. Чем выше частота модуляции тем ближе к действительности проведенный расчет.

Важно, что рассмотренная схема не содержит сложных замкнутых систем автоматического управления, обработка сигнала может производиться достаточно простыми электронными средствами.

ВОГ такого типа может быть полностью волоконным (не содержать элементов в объемном и планарном исполнении), что снижает число отражающих поверхностей и потери излучения при согласовании.

Этими же достоинствами обладает и другая схема ВОГ, имеющая линейную выходную характеристику, а значит и широкий динамический диапазон (рис. 3.33, а). Фазовый модулятор, представляющий собой пьезоэлектрический цилиндр с несколькими витками волокна (см. гл. 4), расположен несимметрично относительно входа - выхода интерферометра, поэтому происходит модуляция сдвига фазы между встречными волнами.

Рис. 3.33. ВОГ с линеаризацией масштабного коэффициента а - функциональная схема; б - временная диаграмма; 1 - источник излучения, 2 - волоконная катушка: 3 - фазовый модулятор» 4 - генератор модулирующей частоты f, 5 - фотодетектор. 6 - полосовой усилитель, 7 - переключатель каналов, 8, 9 - полосовые фильтры, 10 - измеритель сдвига фаз

Если на модулятор подается напряжение с угловой частотой то ток на выходе фотодетектора меняется по закону

где - коэффициент пропорциональности; - амплитуда фазовой модуляции.

Осуществляя переключение между каналами 1 и 2 в моменты времени, соответствующие максимумам и минимумам модулирующего напряжения, как это показано на временных диаграммах (рис. 3.33, б), и выделяя фильтрами сигналы на частоте получаем на выходе первого канала

и на выходе второго канала

где А - коэффициент пропорциональности, определяемый параметрами фотодетектора, электронных схем и глубиной модуляции. Измеряя сдвиг фаз между сигналами первого и второго каналов аналоговым измерителем сдвига фаз или цифровым счетчиком временных интервалов, мы получаем значение удвоенного саньяковского сдвига, прямо пропорционального угловой скорости вращения.

Таким образом, в рассмотренной схеме регистрация сигнала по переменному току существенно снижает уровень шумов, непосредственное измерение фазового сдвига линеаризует масштабный коэффициент прибора. Однако ошибки, связанные с эффектами Фарадея, Керра, двулучепреломлением, остаются, для их устранения необходимо принимать меры, рассмотренные выше.

В другой схеме ВОГ (рис. 3.34), описанной в работах , так же как и в лазерном гироскопе, измеряется расщепление резонансных частот кольцевого резонатора, вызванное вращением с помощью внешнего лазерного источника излучения. В этом случае устраняются недостатки лазерных гироскопов, связанные с наличием нелинейного элемента - активной среды в резонаторе.

Рис. 3.34. Резонаториып ВОГ: 1 - гелий-неоновый лазер; 2, 4 - акустические ячейки Брэгга, 3 - генератор частоты ; 5 - генератор частоты 6 - направленный ответвитель 7 - резонатор, 8,9 - фотодетекторы, 10 - схема автоиодстройки частоты ; 11 - схема автоподстройки периметра резонатора, 12 - смеситель

Свет с частотой от источника излучения поступает на две брэгговские акустооптические ячейки, сдвигающие световую частоту на величины и соответственно. Излучение с частотой через направленный ответвитель вводится в кольцевой волоконный резонатор и распространяется в нем по часовой стрелке. Излучение с частотой также вводится в резонатор и распространяется против часовой стрелки. Система автоподстройки длины периметра подстраивает ее так, чтобы резонансная частота резонатора для волны, бегущей по часовой стрелке, совпала с частотой . Система автоподстройки частоты генератора подстраивает величину так, чтобы совпадала с резонансной частотой для волны, бегущей против часовой стрелки. В результате величины есть резонансные частоты волоконного резонатора для встречных направлений, а их разность пропорциональна произведению числа витков катушки на ее радиус тогда как расщепление частот пропорционально просто радиусу

В выражении для чувствительности резонаторного ВОГ, в отличие от фазового, появляется эффективный показатель преломления моды световода пэфф. Во-первых, это означает, что в резонаторных ВОГ можно использовать только одномодовые световоды, так как значение пэфф зависит от номера моды. Во-вторых, в резонаторных ВОГ наряду с общими для обоих типов ВОГ погрешностями и шумами (вызванными обратным рассеянием и отражением, двулучепреломлением, эффектами Фарадея и Керра) появляется погрешность, обусловленная зависимостью от внешних воздействий, изменений давления, температуры и т. п. (см. п. 3.3). Надо отметить, что при одновременном измерении и частотного интервала между соседними продольными модами волоконного резонатора лэфф становится измеряемой величиной и

Методика измерения расщепления резонансшях частот для встречных направлений с помощью внешнего источника излучения, используемая в резонаторных ВОГ, накладывает жесткие ограничения на ширину спектральной линии излучения. Лучшие результаты получены с использованием гелий-иеонового одночастотного лазера, тогда как в фазовых ВОГ используются слабокогерентные источники (полупроводниковые лазеры и светодиоды). Кроме того, даже если предположить, что излучение монохроматично, порог чувствительности резонаторного ВОГ будет

зависеть от ширины резонансной кривой оптического резонатора, минимальная измеряемая угловая скорость 60 будет определяться выражением

где Г - ширина резонансной кривой оптического резонатора; - среднее в единицу времени число фотонов, попадающих на фотодетектор; - квантовая эффективность фотодетектора; - время осреднения в ВОГ. В целях повышения добротности резонатора (уменьшения Г) имеет смысл увеличивать его длину (например, за счет использования многовитковой конструкции) до тех пор, пока потери в световоде не станут сравнимыми с потерями за счет других факторов

Наряду с перечисленными недостатками необходимо отметить два несомненных преимущества резонаторных ВОГ перед фазовыми. Первое из них заключается в том, что измеряемая величина - расщепление частот - прямо пропорциональна угловой скорости 0. Это означает, что динамический диапазон резонаторного ВОГ не ограничен сверху.

Второе приемущество резонаторных ВОГ состоит в том, что по своей сути они являются цифровыми приборами, легко стыкующимися с вычислительными устройствами. В них, как и в лазерных гироскопах , измерение разности частот за определенный интервал времени есть не что иное, как счет числа импульсов.

Число импульсов соответствует углу поворота системы за время

Фазовые ВОГ измеряют аналоговый сигнал, и лишь в специальных схемах, подобных описанной выше, измерение фазы приводится к измерению интервалов времени.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Принципы волоконно-оптической гироскопии

1.1 Основные характеристики ВОГ

1.2 Принцип взаимности и регистрация фазы в ВОГ

1.3 Модель шумов и нестабильностей в ВОГ

2. Влияние элементов ВОГ на точностные характеристики системы

2.1 Характеристики источников излучения

2.2 Шумовые характеристики волоконно-оптического контура

2.3 Шумовые характеристики фотодетекторов

2.4 Анализ прямых динамических эффектов (температурных градиентов и механических напряжений)

2.5 Влияние внешнего магнитного поля на точностные характеристики ВОГ

3. Методы компенсации погрешностей

3.2 Компенсация избыточного шума в волоконно-оптическом гироскопе с ответвителем типа 3x3

3.3 Компенсация обратного рэлеевского рассеяния

3.4 Компенсация влияния эффекта Керра на точность ВОГ

4. Расчет сметной калькуляции НИР

4.1 Исходные положения

4.2 Определение трудоемкости и календарных сроков работы

4.3 Расчет расходов по статьям затрат и составление сметной калькуляции

4.4 Выводы по расчету

5. Безопасность жизнедеятельности и охрана труда

5.1 Организация рабочих мест

5.2 Температура, влажность, давление

5.3 Требования к освещению

5.4 Требования к уровням шума и вибрации

5.5 Требования к защите от статического электричества и излучений

5.6 Требования к видеотерминальному устройству

5.7 Электробезопасность

5.7 Пожарная безопасность

5.9 Предполагаемые методы защиты

6. Экология и охрана окружающей среды

Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа и является попыткой последовательного рассмотрения принципов построения ВОГ исходя из минимизации влияния элементов на его точностные характеристики. В работе рассмотрены основные принципы волоконно-оптической гироскопии, дана характеристика основных элементов ВОГ различных типов и предложены методы компенсации некоторых погрешностей, обусловленных различными факторами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Конструирование ВОГ на таких световодах определяет уникальные свойства прибора:

потенциально высокая чувствительность (0.01 град/сек и менее);

малые габариты и масса конструкции, благодаря возможности создания ВОГ на интегрально-оптических схемах;

невысокая стоимость производства и относительная простота технологии по сравнению с роторными гироскопами;

низкое потребление энергии;

большой динамический диапазон измеряемых угловых скоростей;

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность;

практически мгновенная готовность работы (не затрачивается время на раскрутку ротора);

низкая чувствительность к линейным ускорениям;

высокая помехоустойчивость;

Принцип действия ВОГ основан на вихревом эффекте Саньяка, открытым в 1913 году. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. В дипломной работе рассмотрены первые две.

В рамках кинематической теории рассмотрен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны. Плоскость контура перпендикулярна оси вращения. Приняв участок пути светового луча бесконечно малым и выразив линейную скорость точки через ее радиус-вектор получим выражение для времени обхода участка контура двумя противоположными лучами.

При вращении контура с некоторой угловой скоростью кажущаяся длина участка для двух волн оказывается различной. Считая скорость света инвариантной величиной связываем удлинение и сокращение путей с удлинением и сокращением отрезков времени и получаем выражение для относительного запаздывания, которое можно выразить через разность фаз встречных волн. Суммирование по всей длине контура определяет итоговую разность фаз.

Рассмотрение идеального кольцевого оптического контура с системой из двух зеркал позволяет получить тот же результат для разности времен распространения встречных лучей.

Явление изменения частоты колебания, излученного передатчиком и принимаемого приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника позволяет рассмотреть эффект Саньяка в рамках доплеровской теории.

Относительный фазовый сдвиг в данном случае определяется разностью частот волн, претерпевших доплеровский сдвиг, и также выражается через угловую скорость вращения контура.

На основе рассмотренного эффекта можно построить принципиальную схему простейшего ВОГ. Излучение от источника попадает на светоделитель, где разделяется на две равные части, которые пройдя замкнутый контур, состоящий из многовитковой катушки, волокна попадают на фотодетектор. Выделенная фаза Саньяка преобразуется устройством обработки в угловую скорость вращения и при необходимости интегрируется с целью определения угла поворота системы.

Интенсивность излучения на фотодетекторе пропорциональна косинусу разности фаз встречных волн, что определяет низкую чувствительность прибора к малым угловым скоростям.

Для максимизации чувствительности к малым изменениям информативного параметра в волоконный контур необходимо поместить простой фазовый модулятор, дающий невзаимный фазовый сдвиг /2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно.

Так как показания прибора полностью определяются разностью фаз встречно бегущих волн, все ошибки ВОГ связаны с невзаимностью условий их распространения.

Основными факторами, влияющими на условия распространения встречно бегущих волн, являются:

флуктуации интенсивности и частоты источника излучения;

изменение характеристик светоделителя;

обратное рассеяние от лучей, движущихся в разных направлениях;

электрооптические эффекты в волокне;

магнитооптические эффекты в волокне;

тепловые градиенты;

поляризационные эффекты;

тепловые шумы нагрузочных элементов выходного тракта;

дробовые шумы фотодетектора.

В работе проведена оценка предела чувствительности (точности) ВОГ, определяемая уровнем фотонных шумов и зависящая от интенсивности оптического излучения падающего на фотодетектор. Полученные теоретические выражения для ошибки обусловленной дробовыми шумами позволяют сделать вывод о необходимости увеличения длины контура и уменьшения полосы пропускания НЧ-фильтра выходного каскада. (график)

Использование высококогерентных лазерных источников позволяет снизить уровень дробовых шумов, однако когерентная составляющая обратного (рэлеевского) рассеяния в волокне приводит к возникновению ошибки в разности фаз между двумя лучами. Исходя из этого предпочтительно использование источника с длиной когерентности много меньшей, чем длина волоконного контура. В этом случае шум, связанный с отражением на конце волокна, суммируется некогерентно с полезным сигналом.

Использование дополнительной модуляции сигналов также позволяет «декогерировать» шум обратного рассеяния.

Во второй главе рассмотрены вопросы влияния элементов ВОГ на точностные характеристики системы.

Анализ характеристик источников излучения позволяет сделать вывод о предпочтительности использования суперлюминесцентных диодов, являющихся низко когерентными и позволяющими компенсировать влияние эффекта Керра и обратного рассеяния. Также они обладают меньшей температурной зависимостью, проще в конструктивном исполнении и являются очень надежными.

Большое внимание уделено характеристикам волоконного контура, так как именно контур является основным источником погрешностей в ВОГ. Рассмотрение количественных значений потерь в волокне является недостаточным для анализа точности ВОГ. Интерес представляет оценка статистических характеристик параметров контура. В работе рассмотрены дисперсионные свойства волокон с различными профилями показателя преломления, проведена качественная оценка зависимостей дисперсии профиля от корреляционных свойств для различных типов неоднородностей в волокне. (графики)

Полученные соотношения позволяют по известным параметрам неоднородностей косвенно определить как вносимые потери так и характер невзаимностей для различных участков волокна.

Наибольшее влияние на характеристики ВОГ могут оказывать изменение радиуса сердцевины и случайные изгибы волокна приводящие к увеличению дисперсии профилей и уширению импульсов.

Важным источником шумов в ВОГ является также фотоприемник. Фоновая засветка, дробовый шум темнового тока, квантовый шум внутреннего фотоэффекта, избыточный шум внутреннего усиления, тепловой шум усилителя и модуляционный шум преобразователя оказывают непосредственное влияние на точность ВОГ.

Качественная оценка эквивалентной мощности шума фотоприемника для различных значений полосы пропускания системы позволяет сделать вывод о необходимости использования лавинных фотодиодов обладающих минимальным уровнем шума и позволяющих значительно увеличить отношение сигнал/шум при низких уровнях сигнала.

Анализ прямых динамических эффектов позволил качественно оценить термически индуцированную невзаимность фазы Саньяка для различных значений длины контура и сделать вывод о необходимости высокой термостабилизации прибора.

Необходимость поляризационной стабильности обусловлена влиянием магнитного поля на разность фаз колебаний. (график)

Использование волокна с устойчивой поляризацией снизит требования к поляризационным устройствам и обеспечит высокую точность прибора.

В качестве компенсации погрешностей предложены два схемотехнических метода и рассмотрены варианты использования некоторых элементов ВОГ. Проведена качественная оценка выигрыша в чувствительности прибора.

Одним из путей повышения точности ВОГ может быть использование в них суперфлуоресцентных источников излучения. Такие источники близки по свойствам к тепловым, но характеризуются высоким уровнем избыточного шума. Для подавления избыточного шума можно использовать балансное детектирование. В качестве опорного сигнала использовать излучение источника, задержанное на время прохождения света по оптическому тракту ВОГ.

Для обеспечения когерентного взаимодействия информативного и опорного сигнала можно использовать в качестве ответвителя направленный ответвитель 3x3. Излучение от источника поступает через направленный ответвитель на входы чувствительного контура, а затем на фотодетекторы, выходы которых подключены к дифференциальному усилителю. Каждая из встречных волн является и информативной (сигнальной) и одновременно - опорной для другой волны. На выходе дифференциального усилителя избыточный шум, обусловленный фоновой засветкой, оказывается скомпенсированным.

Основным механизмом потерь в волокне является обратное рэлеевское рассеяние. Каждая первичная волна, противоположно распространяющаяся в волоконном контуре, возбуждает маломасштабные неоднородности в волокне, которые в свою очередь действуют как индуцированные дипольные излучатели. Световод захватывает часть рассеянного излучения и канализирует его в обратном направлении. Вклады от каждого элементарного рассеивателя суммируются векторно со случайной фазой и образуют полное рассеянное поле в каждом направлении. На выходе контура появляется составляющая фазового сдвига отличная от фазы Саньяка, что приводит к ошибке в измерении скорости.

Способы минимизации ошибки ВОГ, обусловленной обратным рэлеевским рассеянием могут быть связаны с уменьшением взаимной когерентности между первичной и вторичной (рассеянной) волной. Частотная модуляция первичного сигнала, уменьшая когерентность, не вносит дополнительной невзаимности в контур. Изменения частоты лазерного излучения также могут быть источником рандомизации фазы. Уменьшение когерентности можно также реализовать с помощью дополнительной фазовой модуляции первичной волны.

Уменьшить ошибку можно используя способ усреднения в течении постоянной интегрирования системы обработки.

Оптический нелинейный эффект Керра проявляется в виде возмущения коэффициента преломления среды при изменении интенсивности воздействующего на среду электрического поля. Если мощности оптических лучей, распространяющихся в противоположных направлениях неодинаковы, а следовательно неодинаковы и постоянные распространения, то это приводит к фазовой невзаимности контура и в результате к ошибке измерения угловой скорости.

Компенсации этого эффекта можно достичь прямоугольной модуляцией источника излучения или выбором источника с соответствующими спектральными характеристиками.

Введение

Волоконный оптический гироскоп (ВОГ) - оптико-электронный прибор, создание которого стало возможным лишь с развитием и совершенствованием элементной базы квантовой электроники. Прибор измеряет угловую скорость и углы поворота объекта, на котором он установлен. Принцип действия ВОГ основан на вихревом (вращательном) эффекте Саньяка.

Интерес зарубежных и отечественных фирм к оптическому гироскопу базируется на его потенциальных возможностях применения в качестве чувствительного элемента вращения в инерциальных системах навигации, управления и стабилизации. Этот прибор в ряде случаев может полностью заменить сложные и дорогостоящие электромеханические (роторные) гироскопы и трехосные гиростабилизированные платформы. По данным зарубежной печати в будущем в США около 50% всех гироскопов, используемых в системах навигации, управления и стабилизации объектов различного назначения, предполагается заменить волоконными оптическими гироскопами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Именно конструирование ВОГ на таких световодах определяет уникальные свойства прибора. К этим свойствам относят:

потенциально высокую чувствительность (точность) прибора, которая уже сейчас на экспериментальных макетах 0,1 град/ч и менее;

малые габариты и массу. Конструкции, благодаря возможности создания ВОГ полностью на интегральных оптических схемах;

невысокую стоимость производства и конструирования при массовом изготовлении и относительную простоту технологии;

ничтожное потребление энергии, что имеет немаловажное значение при использовании ВОГ на борту;

большой динамический диапазон измеряемых угловых скоростей (в частности, например, одним прибором можно измерять скорость поворота от 1 град/ч до 300 град/с);

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность и удешевляет их производство;

практически мгновенную готовность к работе, поскольку не затрачивается время на раскрутку ротора;

нечувствительность к большим линейным ускорениям и следовательно, работоспособность в условиях высоких механических перегрузок;

высокую помехоустойчивость, низкую чувствительность к мощным внешним электромагнитным воздействиям благодаря диэлектрической природе волокна;

слабую подверженность проникающей гамма-нейтронной радиации, особенно в диапазоне 1,3 мкм.

Волоконный оптический гироскоп может быть применен в качестве жестко закрепленного на корпусе носителя чувствительного элемента (датчика) вращения в инерциальных системах управления и стабилизации. Механические гироскопы имеют так называемые гиромеханические ошибки, которые особенно сильно проявляются при маневрировании носителя (самолета, ракеты, космического аппарата). Эти ошибки еще более значительны, если инерциальная система управления конструируется с жестко закрепленными или «подвешенными» датчиками непосредственно к телу носителя. Перспектива использования дешевого оптического датчика вращения, который способен работать без гиромеханических ошибок в инерциальной системе управления, есть еще одна причина особого интереса к оптическому гироскопу.

Появление идеи и первых конструкций волоконного оптического гироскопа тесно связан с разработкой кольцевого лазерного гироскопа (КЛГ). В КЛГ чувствительным контуром является кольцевой самовозбуждающийся резонатор с активной газовой средой и отражающими зеркалами, в то время как в ВОГ пассивный многовитковый диэлектрический световодный контур возбуждается «внешним» источником светового излучения. Эти особенности определяют, по крайней мере, пять преимуществ ВОГ по сравнению с КЛГ:

В ВОГ отсутствует синхронизация противоположно бегущих типов колебаний вблизи нулевого значения угловой скорости вращения, что позволяет измерять очень малые угловые скорости, без необходимости конструировать сложные в настройке устройства смещения нулевой точки;

2. Эффект Саньяка, на котором основан принцип работы прибора, проявляется на несколько порядков сильнее из-за малых потерь в оптическом волокне и большой длины волокна.

3. Конструкция ВОГ целиком выполняется в виде твердого тела (в перспективе полностью на интегральных оптических схемах), что облегчает эксплуатацию и повышает надежность по сравнению с КЛГ.

4. ВОГ измеряет скорость вращения, в то время как КЛГ фиксирует приращение скорости.

5. Конфигурация ВОГ позволяет «чувствовать» реверс направления вращения.

Эти свойства ВОГ, позволяющие создать простые высокоточные конструкции полностью на дешевых твердых интегральных оптических схемах при массовом производстве привлекают пристальное внимание разработчиков систем управления. По мнению ряда зарубежных фирм, благодаря уникальным техническим возможностям ВОГ будут интенсивно развиваться.

Зарубежные авторы констатируют, что разработка конструкции ВОГ и доведение его до серийных образцов не простая задача. При разработке ВОГ ученые и инженеры сталкиваются с рядом трудностей. Первая связана с технологией производства элементов ВОГ. В настоящее время еще мало хорошего одномодового волокна, сохраняющего направление поляризации; производство светоделителей, поляризаторов, фазовых и частотных модуляторов, пространственных фильтров, интегральных оптических схем находится на начальной стадии развития. Число разработанных специально для ВОГ излучателей и фотодетекторов ограничено.

Фирмами и разработчиками ВОГ обе эти задачи решаются. Совершенствуется технология производства элементов в ВОГ, теоретически и экспериментально исследуются физическая природа возмущений и нестабильностей, создаются и испытываются различные схемные варианты ВОГ с компенсацией этих возмущений, разрабатываются фундаментальные вопросы использования интегральной оптики. Точность ВОГ уже сейчас близка к требуемой в инерциальных системах управления.

В специальной научной и периодической литературе проблеме ВОГ уже опубликовано множество научных статей. Анализ этих статей свидетельствует о необходимости дальнейшего изучения этой проблемы и разработки новых способов улучшения качественных характеристик ВОГ.

Систематизация и обобщение узловых вопросов теории и практики создания ВОГ также является важным этапом.

Задачей дипломной работы является анализ работы ВОГ, обобщенной модели шумов и нестабильностей и оценка предельной (потенциальной) чувствительности прибора. На основе свойства взаимности необходимо рассмотреть минимальную конфигурацию ВОГ. Затем оценить современное состояние элементной базы. При этом значительное внимание уделить свойствам волоконных световодов и провести анализ возможных неоднородностей и потерь для различных типов волокон. Рассмотреть основные элементы ВОГ: волоконный контур, излучатели и фотодетекторы, а также предложить способы компенсации шумов и нестабильностей ВОГ (таких, как обратное рэлеевское рассеяние, оптический нелинейный эффект, температурные градиенты, магнитное поле и др.).

Основной задачей дипломной работы является рассмотрение ключевых аспектов теории ВОГ на основе анализа погрешностей его элементов и качественной оценки точностных характеристик устройства с учетом использования различных подходов к решению проблемы повышения его чувствительности.

Необходимо также рассмотреть различные схемотехнические методы снижения уровня шумов и нестабильностей ВОГ.

Отдельно отразить технико-экономические аспекты работы, вопросы безопасности жизнедеятельности при проведении исследований, а также проблемы экологической безопасности при использовании прибора.

1. Принципы волоконно-оптической гироскопии

1.1 Основные характеристики ВОГ

Оптический гироскоп относится к классу приборов, в которых в замкнутом оптическом контуре распространяются встречно бегущие световые лучи. Принцип действия оптического гироскопа основан на «вихревом» эффекте Саньяка, открытым этим ученым в 1913 г. . Сущность вихревого эффекта заключается в следующем. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. Наиболее простая из них - кинематическая, наиболее строгая - релятивистская, основанная на общей теории относительности. Рассмотрим вихревой эффект Саньяка в рамках кинематической теории.

Рис 1.1. Кинематическая схема вихревого эффекта Саньяка.

На рис. 1.1 изображен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны 1 и 2 (рис. 1.1). Плоскость контура перпендикулярна оси вращения, проходящей через произвольную точку О. Угловую скорость вращения контура обозначим. Участок пути светового луча АВ примем бесконечно малым, его длину обозначим l. Радиус-вектор произвольной точки контура А обозначим r. Отрезок дуги АВ" обозначим. При вращении контура вокруг точки О с угловой скоростью линейная скорость точки А равна. Учитывая, что треугольник AB"B мал:

где - угол между вектором линейной скорости точки А и касательной AM к контуру в точке А.

Проекция линейной скорости точек контура на направление вектора скорости света в этих точках

Если контур неподвижен, то время обхода участка контура АВ=l двумя противоположными лучами одинаково; обозначим его dt.

dt = l / c =. (1.3)

При вращении контура с угловой скоростью кажущееся расстояние между точками А и В для встречно бегущих лучей изменяется. Для волны бегущей из точки А в точку В, т.е. в направлении, совпадающем с направлением вращения контура, расстояние удлиняется, так как за время dt точка В переместится на угол, перейдя в точку С.

Это удлинение пути для светового луча будет равно dt, поскольку в каждое мгновение луч направлен по касательной к контуру, по этой же касательной направлена проекция линейной скорости. Таким образом, отрезок пути, проходимый лучом, равен l + dt. Рассуждая аналогично, для встречно бегущего луча света будет иметь место кажущееся сокращение отрезка пути l - dt

Считая скорость света инвариантной величиной, кажущиеся удлинения и сокращения путей для встречных лучей можно эквивалентно считать удлинениями и сокращениями отрезков времени, т.е.

Подставляя выражения (1.2)-(1.3) для и dt, получаем

Из рис 1.1. следует

где s - площадь сектора.

С точностью до бесконечно малых второго порядка площадь АОВ можно заменить на s. Тогда

Полное время распространения встречных лучей вдоль всего контура

где суммирование ведётся по числу элементарных секторов, на которые разбит весь контур.

Таким образом, полное время, затрачиваемое лучом, бегущим по часовой стрелке при обходе всего вращающегося контура, больше чем полное время, затрачиваемое лучом, бегущим против часовой стрелки.

Разность времен и или относительное запаздывание встречных волн

где S - площадь всего контура.

Если относительное запаздывание встречных волн (1.8) возникающее при вращении, выразить через разность фаз встречных волн, то она составит

Разность фаз является фазой Саньяка. Как видно, фаза Саньяка пропорциональна угловой скорости вращения контура.

Кинематическую теорию вихревого эффекта Саньяка ещё проще объяснить, рассматривая идеальный кольцевой оптический контур радиуса (рис 1.2.).

Рис 1.2. Эффект Саньяка в кольцевом оптическом контуре.

Луч света приходит в точку А и с помощью зеркал и расщепляется на два луча, один из которых распространяется по часовой стрелке в контуре, а другой - против часовой стрелки. С помощью этих же зеркал, после распространения в контуре лучи объединяются и направляются по одному, пути. При неподвижном контуре пути прохождения лучей одинаковы и равны

где с - скорость света, - время прохождения периметра контура лучом.

Оба луча приходят в точку А на расщепитесь в фазе. Если контур вращается с постоянной угловой скоростью, то луч, распространяющийся по часовой стрелке, прежде чем попадет на перемещающийся расщепитель, пройдет путь

Это вызвано тем, что за время прохождения луча по замкнутому контуру расщепитель, находившийся ранее в точке А, уйдет в точку В. Для луча, распространяющегося против часовой стрелки, путь

Как видим, пути распространения противоположно бегущих лучей разные. Поскольку скорость света с - величина постоянная, это эквивалентно разным временам прохождения лучей, распространяющихся в противоположных направлениях замкнутого вращающегося контура, и.

Разность времен распространения

В приближении первого порядка по можно записать

Что совпадает с выражением (1.8), полученным выше, если считать - площадь контура.

Эффект Саньяка может быть объяснен на основе понятия доплеровского сдвига частоты. Эффектом Доплера называется явление изменения частоты колебаний, излученных передатчиком и принимаемых приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника. При этом частота принятого колебания

где f - частота излученного колебания, V - скорость перемещения передатчика, а знаки «+» или «-» соответствуют сближению или удалению передатчика относительно наблюдателя.

Доплеровский частотный сдвиг

пропорционален скорости перемещения излучателя.

Рассмотрим кольцевой оптический контур радиуса вращающийся с угловой скоростью (рис. 1.3.). Аналогом перемещающегося излучателя в контуре является движущееся с линейной скоростью отражающее зеркало. При вращении контура встречно бегущие лучи имеют различные длины волн вследствие доплеровского сдвига, накапливаемого при отражении волны от зеркала, смещающегося со скоростью.

При вычислении фазы, накопленной в обоих плечах оптического контура, необходимо рассматривать вращающуюся систему в целом. Оба оптических пути тогда равны, но длины волн отличаются на доплеровский сдвиг. Тогда относительный фазовый сдвиг

Определим величину. Длина волны излучения, претерпевшего доплеровский сдвиг:

Подставляя полученное выражение в формулу для относительного фазового сдвига, получаем

Фаза Саньяка

что полностью совпадает с выражением (1.9), полученным при вычислении разности времен обхода лучом вращающегося контура.

Таким образом, мы рассмотрели два эквивалентных подхода к объяснению эффекта Саньяка. В первой интерпретации эффект проявляется как разность времен распространения встречно бегущих лучей во вращающемся контуре; во второй - как разность длин волн лучей в двух плечах контура одинаковой оптической длины.

Измеряя электронным устройством разность фаз, можно получить информацию от угловой скорости вращения основания (объекта), на котором закреплен контур. Интегрируя измеренный сигнал, получают угол поворота основания (объекта). Эта информация затем используется для управления и стабилизации объектов.

В зависимости от конструкции замкнутого оптического контура различают два типа оптических гироскопов. Первый тип, так называемый кольцевой лазерный гироскоп (КЛГ), в котором контур образован активной средой (смесью газов гелия и неона) и соответствующими зеркалами, образующими замкнутый путь (кольцевой лазер) . Второй тип--волоконный оптический гироскоп (ВОГ), в котором замкнутый контур образован многовитковой катушкой оптического волокна. Принципиальная схема ВОГ показана на рис. 1.3.

Рис 1.3. Принципиальная схема волоконно-оптического гироскопа.

Если контур ВОГ образовать нитью оптического волокна длиной L, намотанного на цилиндр радиуса R, то фаза Саньяка

где R - радиус витка контура; N - число витков; S -площадь витка контура.

В соответствии с рис. 1.3., излучение источника подается на светоделитель и разделяется на два луча. Два луча, обошедшие контур в противоположных направлениях, рекомбинируют на светоделителе и смешиваются в фотодетекторе. Результирующее колебание можно записать в виде

где - амплитуды колебаний; - частота излучения; ; ; - начальная фаза колебания; - фаза Саньяка.

Интенсивность излучения на фотодетекторе

Обозначив интенсивность излучения на выходе лазерного диода считая, что в волоконном контуре отсутствуют потери, и полагая, что светоделитель разделяет энергию точно поровну, имеем:

Тогда выражение (1.21) принимает вид:

Анализ выражения позволяет сделать вывод о низкой чувствительности прибора в данной конфигурации к малым угловым скоростям:

Для максимизации чувствительности к малым изменениям информативного параметра (фазы Саньяка) в волоконный контур необходимо поместить простой фазовый модулятор, дающий «невзаимный» фазовый сдвиг /2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно:

а чувствительность ВОГ будет находиться на максимальном значении 0.5.

Различные способы введения «невзаимного» фазового сдвига будут рассмотрены ниже.

В конфигурации, приведенной на рис 1.3., выходной ток фотодетектора повторяет изменения интенсивности (мощности) входного излучения, т.е.:

где - квантовая эффективность фотодетектора; q - заряд электрона; h - постоянная Планка; f - частота оптического излучения.

Если пренебречь постоянной составляющей выходного тока, то на выходе фотодетектора получим сигнал

При введении невзаимного фазового сдвига /2 и для малых значений выходной ток:

Таким образом, значения выходного тока пропорциональны фазе Саньяка, которая в свою очередь пропорциональна угловой скорости вращения контура.

1.2 Принцип взаимности и регистрация фазы в ВОГ

В типичных экспериментальных конструкциях гироскопов используется катушка с R = 100 мм при длине волокна L = 500 м. Обнаружение скорости вращения в 1 град/ч требует регистрации фазы с разрешением порядка 10-5 рад. Это показано на рис. 1.4., где изображены значения фазового сдвига в функции угловой скорости вращения контура и величины LR при = 0,63 мкм.

Оптические интерференционные системы фазовой регистрации с такой чувствительностью хорошо известны, однако в гироскопах существуют некоторые особые моменты, связанные с регистрацией фазы. Первый связан с тем фактом, что зачастую гироскоп работает с номинальной почти нулевой разностью хода, и для малых изменений в относительном значении фазы имеет место пренебрежимо малое изменение интенсивности на выходе.

Рис 1.4. Фаза Саньяка в угловой скорости вращения для различных значений параметра LR.

Работа при смещении фазы в 90° максимизирует чувствительность, однако это вносит некоторую невзаимность для двух направлений распространения лучей в гироскопе, т. к. фаза луча, распространяющегося по часовой стрелке, отличается от фазы луча, распространяющегося против часовой стрелки, в отсутствии вращения.

Свойство взаимности - это второй важный момент в ВОГ. Фазовая невзаимность в ВОГ определяется дифференциальной разностью фаз встречно бегущих лучей. Любая фазовая невзаимность (разность фаз) для двух направлений дает изменения в показаниях гироскопа. Если невзаимность является функцией времени, то имеет место некоторый временной дрейф в показаниях гироскопа. Волокно длиной 500 м дает фазовую задержку порядка 1010 рад. Таким образом, для того чтобы зарегистрировать скорость вращения 0,05 град/ч, нужно, чтобы пути распространения противоположно бегущих лучей согласовывались с относительной точностью до 10-17 рад.

Следует, кроме того, отметить, что сам принцип действия волоконного оптического гироскопа основан на невзаимном свойстве распространения встречных волн во вращающейся системе отсчета (появление разности фазовых набегов двух лучей при вращении). Поэтому несомненна важность анализа невзаимных эффектов и устройств в ВОГ (по меньшей мере, хотя бы для определения точности прибора).

Принцип взаимности хорошо иллюстрируется известной теоремой Лоренца для взаимных систем. Если характеризовать две электрод магнитные волны векторами, и, где - вектор напряженности электрического поля, а - вектор напряженности магнитного поля, то принцип взаимности выполняется для систем, у которых

где - антисимметричные тензоры магнитной и диэлектрической

проницаемостей материальной среды соответственно.

Условием невзаимности является неравенство нулю приведенного выше соотношения. К средам, проявляющим невзаимность, относятся магнитно-гиротропные материалы (ферромагнетики): электрически гиротропные среды (диамагнетики), находящиеся под действием магнитного поля; прозрачные диэлектрики; среды, совершающие поступательное движение относительно любой системы координат, в которой задано электромагнитное поле; вращающиеся среды; канализирующие системы типа волноводов и световодов. Последние случаи представляют особый интерес, поскольку при вращении ВОГ появляется фазовая невзаимность, дающая фазовую разность Саньяка.

При вращательном движении среды условие невзаимности имеет вид

Исключение случайных флуктуаций может потребовать длительного накопления (интегрирования) выходного сигнала ВОГ, с тем чтобы выделить полезную составляющую (как показано в в некоторых экспериментальных установках высокочувствительных ВОГ время интегрирования доходит до минут и даже до десятков минут).

Применительно к ВОГ анализ принципа взаимности удобно проводить для цепи с четырьмя входами и выходами. Для оптического волновода четыре входа соответствуют вводам излучения вдоль двух взаимно перпендикулярных направлений поляризации на каждом конце волокна. Соответствующие входы и выходы определяются вдоль идентичных поляризационных осей.

Отсюда следует, что в случае ввода излучения с исходным направлением поляризации Х свет, выходящий с ортогональным направлением поляризации У, будет обладать различными набегами фазы в каждом направлении распространения, а свет, выходящий с исходным направлением поляризации X, будет обладать одинаковыми набегами фазы для каждого направления распространения.

В этом часть требований, налагаемых интерпретацией теоремы взаимности Лоренца, которая постулирует, что в случае линейной системы оптические пути в точности взаимны, если данная входная пространственная мода оказывается такой же на выходе.

Одним из параметров пространственной моды является поляризация; второй параметр также должен быть определен, например пространственное распределение (расположение) моды. Следовательно, на конце контура ВОГ должны быть как поляризационный фильтр (селектирующий исходную поляризацию), так и пространственный фильтр, что будет удовлетворять принципу взаимности Лоренца.

Эти довольно простые устройства в конструкции ВОГ (при условии, что они могут быть реализованы с достаточной точностью) будут гарантировать условия взаимности в системе, но только в том случае, если выполняется условие линейности. Если же нелинейности значительны, то ВОГ будет обладать взаимностью в том случае, если имеется точная симметрия относительно средней точки волоконного контура. Это условие подразумевает, что энергия, вводимая в каждый конец контура, одинакова и что свойства волокна равномерно распределены (или по крайней мере симметричны).

Мощность оптического излучения, вводимого в волокно, столь мала (всегда меньше чем 1.2 мВт), что, казалось бы, нелинейностями можно пренебречь. Однако чувствительность ВОГ к невзаимностям чрезвычайно высока и нелинейные эффекты (в частности, эффект Керра) приводят к заметным не взаимностям, эквивалентным скорости вращения выше 1 град/ч. В оптическом волокне имеет место вращение плоскости поляризации линейно-поляризованного света под действием внешнего магнитного поля (эффект Фарадея).

Вращение Фарадея -- это другой невзаимный эффект. В случае линейно-поляризованного света полное вращение зависит от линейного интеграла тока, взятого по оптическому пути. В случае ВОГ этот интеграл равен нулю в магнитном поле Земли. Однако, более тщательное изучение взаимодействия света в волокне и магнитного поля вдоль волокна указывает на то, что истинным источником вращения является индуцированное круговое двойное лучепреломление и что упомянутый выше простой подход оказывается полезным только в том случае, если обе круговые компоненты поляризации (правая и левая) обладают одинаковыми амплитудами. Это справедливо только для случая линейно-поляризованного света.

При распространении света в волокне имеют место все возможные состояния поляризации и процент пребывания света в каждом собственном круговом поляризационном состоянии Фарадеевского ротатора изменяется вдоль оптического пути случайным образом. Это приводит в результате к определенной разности фаз для двух направлений распространения линейно-поляризованной моды на выходе.

Таким образом, ВОГ весьма чувствителен к магнитному полю Земли, и при конструировании ВОГ для измерения скорости вращения требуется магнитное экранирование (или обеспечение линейной поляризации света на всем пути в волокне). Предполагая, что магнитное поле Земли равно 27 и считая, что компенсация поля отсутствует на 5% длины волокна, можно получить значение отклонения фазы, которое эквивалентно скорости вращения Земли.

Вышеизложенные моменты включали невзаимные эффекты, индуцированные в волокне; однако, уже даже первые этапы при конструировании ВОГ с точки зрения сохранения взаимности в системе регистрации должны заключаться в том, чтобы обеспечить одинаковую длину оптических путей в ВОГ.

На рис. 1.3. видно, что эта конфигурация не обладает свойством взаимности, так как пучок света, распространяющийся по часовой стрелке, проходит через делитель света дважды, а пучок света, распространяющийся против часовой стрелки, отражается от светоделителя дважды. Но в то же время взаимный оптический выходной путь от чувствительного контура идет в направлении обратно к источнику (от светоделителя к диоду), т. е. вдоль входного оптического пути.

Следовательно, добиться взаимности в системе регистрации можно, если поместить второй расщепитель пучка вдоль входногo оптического пути (рис. 1.5.).

Диапазон скоростей вращения, которые измеряются высокочувствительным гироскопом инерциальных систем управления, простирается от 0,1 град/ч до 400 град/ч. При LR = 100 м этим значениям скорости соответствует диапазон изменения фазы от 10 до 10 рад (рис.1.4.).

Рис 1.5. Схема ВОГ с постоянным смещением разности фаз.

К настоящему времени уже затрачены значительные усилия на увеличение чувствительности прибора к низким скоростям, и в то же время весьма мало внимания уделяется проблемам, связанным с увеличением требуемого динамического диапазона.

Как уже отмечалось, в случае необходимости измерения больших изменений интенсивности для данного изменения фазы нужно внести фазовый сдвиг /2, т. е. интерферометр должен работать в режиме квадратуры. В этом режиме связь между изменениями интенсивности и изменениями фазы является линейной (до 1%) только до максимальных отклонений фазы в 0,1 рад. Компенсация нелинейности может быть осуществлена в самой системе регистрации, однако лишь до максимального отклонения фазы порядка 1 рад.

Существует ряд способов регистрации фазы, которые могут быть использованы при конструировании ВОГ.

Наиболее распространены схемы, где используется статическая разность фаз в 90° между двумя лучами и схемы с переменной разностью фаз в 90°.

Статическая невзаимная разность фаз между лучами, распространяющимися по часовой и против часовой стрелки, может создаваться, например, с помощью элемента Фарадея, размещаемого на одном конце волоконного контура (рис. 1.5.). Изменения регистрируемой интенсивности на взаимном выходе соответствуют изменениям в значении относительной фазы для двух лучей, обегающих контур.

Основываясь на принципах смещения фазы можно предложить другой принцип регистрации обладающий более высокой чувствительностью.

Относительная фаза для лучей, распространяющихся по двум направлениям, модулируется по фазе (- /2, /2) на частоте 1/2Т (Т - время прохождения луча через контур). Таким образом, свет, инжектируемый в момент времени, в направлении по часовой стрелке испытывает задержку на 90°, свет, распространяющийся в направлении против часовой стрелки, не испытывает задержки (это определяется положением фазового модулятора, как показано на рис. 1.4.).

Однако, к тому моменту времени, когда движущийся против часовой стрелки луч достигнет положения фазового модулятора, смещения фазы не будет. Свет, инжектируемый по часовой стрелке в момент, времени, интерферирует с волной, распространяющейся против часовой стрелки со сдвигом фаз - 90°, и т. д.

Следовательно, результирующая волна на выходе, которая включает как эффект периодического фазового смещения (дающего в принципе постоянный уровень интенсивности на выходе), так и фазовый сдвиг из-за эффекта Саньяка, модулируется так, как это показано на рис. 1.5. Таким образом, выходной сигнал фотодетектора

При модуляции:

Глубина модуляции зависит от фазы, индуцированной вращением.

При создании ВОГ для модуляции обычно используется цилиндрический пьезоэлектрический датчик, вокруг которого намотано волокно. Более удобно использовать синусоидальную модуляцию относительной фазы двух противоположно бегущих лучей. Если разность фаз, индуцированная вращением, равна, то легко показать, что переменная составляющая интенсивности суммарной волны на выходе интерферометра, с учетом периодической фазовой модуляции на частоте и с девиацией будет равна

Используя стандартное разложение по Бесселевым функциям, получаем:

Таким образом регистрация на частоте модуляции дает сигнал, амплитуда которого пропорциональна; эта величина может быть сделана максимальной, если выбрать значение, максимизирующее (т.е. 1.8 рад).

Величина девиации является максимальной индуцированной эффективной разностью фаз между лучами, движущимися по часовой стрелке и против часовой стрелки за время цикла модуляции. При оценке этого значения надо знать не только глубину модуляции самого датчика, необходимо учитывать также пролетное время для оптического пути в волокне.

1.3 Модел ь шумов и нестабильностей в ВОГ

Волоконный оптический гироскоп представляет собой достаточно сложную оптико-электронную систему. При конструировании реального прибора оптические элементы и электронные устройства должны выбираться и компоноваться так, чтобы минимизировать влияние внешних возмущений (температурных градиентов, механических и акустических вибраций, магнитных полей и др.). В самом приборе, кроме того, имеет место ряд внутренних источников шумов и нестабильностей. Условно эти шумы и нестабильности можно разделить на быстрые и медленные возмущения. Быстрые возмущения оказывают случайное кратковременное усредненное влияние (секунды) на чувствительность ВОГ; они отчетливо проявляются при нулевой скорости вращения (кратковременный шум). Медленные возмущения вызывают медленный дрейф сигнала, приводящий к долговременным уходам в считывании показаний ВОГ (долговременный дрейф).

Обобщенная модель источников шумов и нестабильностей в ВОГ показана на рис. 1.6.

Рис 1.6. Обобщённая модель шумов и нестабильностей в ВОГ.

Если исключить влияние всех источников шумов и нестабильностей в ВОГ, что, конечно возможно лишь в принципе, то всегда остаются принципиально неустранимые шумы - так называемые квантовые или фотонные шумы; их называют также дробовыми шумами. Эти шумы появляются лишь в присутствии полезного оптического сигнала на входе фотодетектора и обусловлены случайным распределением скорости прихода фотонов на фотодетектор, что приводит к случайным флуктуациям тока фотодетектора. В этом случае чувствительность (точность) ВОГ ограничивается лишь дробовыми (фотонными) шумами. Чувствительность (точность) ВОГ, определяемая дробовыми (фотонными) шумами, как и всяких других оптических информационно-измерительных систем, является фундаментальным пределом чувствительности (точности) прибора. Фотонные шумы являются следствием квантовой природы светового излучения. Применительно к оптическим системам передачи информации предельная помехоустойчивость этих систем, обусловленная фотонными шумами, была вычислена в .

Следуя работам , проведем оценку фундаментального предела чувствительность (точности) ВОГ.

Уровень фотонных шумов зависит от интенсивности оптического излучения, падающего на фотодетектор, и определяется флуктуациями интенсивности оптического излучения.

Полученная выше формула для интенсивности излучения на фотодетекторе позволяет записать выражение для мощности излучения, падающего на фотодетектор в виде:

где Р - мощность входного в ВОГ излучения.

Из этого выражения следует, что дробовые (фотонные) шумы, обусловленные процессом детектирования мощности излучения, связаны с появлением "фазовых" шумов и соответственно приводят к ошибке измерения угловой скорости вращения. Если фотодетектор принимает поток фотонов, то число обнаруживаемых фотонов в единицу времени является случайной величиной, распределенной по закону Пуассона (в случае использования лазерного излучателя) Математическое ожидание числа фотонов, падающих на фотодетектор, за время интегрирования Т равно средней энергии, деленной на энергию одного фотона:

где h - постоянная Планка; f - частота излучения.

Среднеквадратическое значение числа фотонов пуассоновского распределения равно квадратному корню из среднего значения, т. е.

Найдем среднеквадратическое значение "фазового" шума:

Тогда с учётом выражения (1.35)получим:

где - полоса пропускания системы обнаружения и обработки сигнала.

Для типовых значений мкВт и Гц

Отсюда следует, что при ширине полосы 1 Гц предел чувствительности по измеряемой фазе составляет рад.

Для определения среднеквадратической ошибки измерения угловой скорости вращения, обусловленной фотонным шумом, воспользуемся выражением для фазы Саньяка:

Приняв, что типовой ВОГ имеет L = 1 км, D = 10 см, (1 / 2)P0 = 100 мкВт, f = Гц, имеем:

Откуда следует, что для ширины полосы 1 Гц и для контура с LR = 50 порог регистрации скорости вращения составляет 0.01 град/ч. Выражая полосу пропускания через единицы, обратные часам, получаем выражение для минимального случайного дрейфа ВОГ

Оценку предельной чувствительности ВОГ можно найти по отношению сигнал-шум на выходе устройства обработки. Устройство обработки выходного сигнала ВОГ состоит из фотодетектора с квантовой эффективностью, усилителя с коэффициентом усиления (умножения) G , нагрузочного сопротивления Rн и низкочастотного фильтра с полосой пропускания f.

Выходной ток фотодетектора:

где, q - заряд электрона.

Учитывая коэффициент усиления G , сигнальную составляющую тока запишем в виде

Мощность сигнальной составляющей равна

Мощность дробовых шумов согласно стандартной методике вычисления отношения сигнал-шум вычисляется по формуле Шотки и равна:

При вычислении мощности шума учитываются только принципиально неустранимые дробовые шумы полезного сигнала.

Отношение сигнал-шум примет вид

Полагая (с / ш) = 1 , заменяя функцию синуса его аргументом, подставляя вместо с ее значение через угловую скорость вращения, получаем минимально обнаруживаемую угловую скорость вращения:

Подобные документы

    Оптические кабели и разъемы, их конструкции и параметры. Основные разновидности волоконно-оптических кабелей. Классификация приемников оптического излучения. Основные параметры и характеристики полупроводниковых источников оптического излучения.

    курс лекций , добавлен 13.12.2009

    Принцип действия обобщенного волоконно-оптического датчика. Оптическая схема модуляции света. Классификация фазовых (интерферометрических) датчиков. Внешний вид интерферометра световолоконного автоматизированного ИСА-1, технические характеристики.

    доклад , добавлен 19.07.2015

    Конструкция оптического волокна и расчет количества каналов по магистрали. Выбор топологий волоконно-оптических линий связи, типа и конструкции оптического кабеля, источника оптического излучения. Расчет потерь в линейном тракте и резервной мощности.

    курсовая работа , добавлен 09.02.2011

    Принцип построения волоконно-оптической линии. Оценка физических параметров, дисперсии и потерь в оптическом волокне. Выбор кабеля, системы передачи. Расчет длины участка регенерации, разработка схемы. Анализ помехозащищенности системы передачи.

    курсовая работа , добавлен 01.10.2012

    Схема трассы волоконно-оптического кабеля. Выбор оптического кабеля, его характеристики для подвешивания и прокладки в грунт. Расчет параметров световода. Выбор оборудования и оценка быстродействия кабеля, его паспортизация. Поиск и анализ повреждений.

    курсовая работа , добавлен 07.11.2012

    Математическая модель тетрады чувствительных элементов прибора БИУС-ВО. Принцип действия чувствительного элемента прибора БИУС-ВО – волоконно–оптического гироскопа. Разработка методики оценки шумовых составляющих канала измерения угловой скорости.

    дипломная работа , добавлен 24.09.2012

    Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат , добавлен 26.03.2019

    Определение затухания (ослабления), дисперсии, полосы пропускания, максимальной скорости передачи двоичных импульсов в волоконно-оптической системе. Построение зависимости выходной мощности источника оптического излучения от величины электрического тока.

    контрольная работа , добавлен 21.06.2010

    Цифровые волоконно-оптические системы связи, понятие, структура. Основные принципы цифровой системы передачи данных. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации. Контроль PMD.

    курсовая работа , добавлен 28.08.2007

    Общее описание и назначение, функциональные особенности и структура пассивных компонентов волоконно-оптических линий связи: соединители и разветвители. Мультиплексоры и демультиплексоры. Делители оптической мощности, принцип их действия и значение.

Лучшие статьи по теме