Windows. Железо. Интернет. Безопасность. Программы
  • Главная
  • Windows 7
  • Операции суперпозиции и замыкания. Полнота, базис системы функций. Суперпозиция булевых функций Монотонные булевы функции

Операции суперпозиции и замыкания. Полнота, базис системы функций. Суперпозиция булевых функций Монотонные булевы функции

- (позднелат. superpositio, – наложение, от лат. superpositus – положенный наверх) (композиция) – операция логико математич. исчислений, заключающаяся в получении из к. л. данных функций f и g данного исчисления новой функции g (f) (выражение g… … Философская энциклопедия

Термин суперпозиция (наложение) может относиться к следующим понятиям: Суперпозиция композиция функций (сложная функция) Принцип суперпозиции принцип в физике и математике, описывающий наложение процессов (например, волн) и, как следствие,… … Википедия

Композиция функций, составление из двух функций сложной функции … Математическая энциклопедия

У этого термина существуют и другие значения, см. Суперпозиция. Квантовая механика … Википедия

В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

В теории дискретных функциональных систем булевой функцией называют функцию типа, где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… … Википедия

Один из важнейших для оснований математики и математич. логики классов понятий, служащих уточнениями содержат. понятий эффективно вычислимой арифметической функции и эффективно разрешимого арифметического предиката, а в конечном счете, – и… … Философская энциклопедия

Функция, вычисление значений к рой может быть проведено с помощью заранее заданной эффективной процедуры, или алгоритма. Характерная черта вычислительных процессов вычисление искомых величин задач происходит последовательно из данных исходных… … Математическая энциклопедия

Необходимо перенести содержимое этой статьи в статью «Дифференцирование сложной функции». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон {{к объединению}} … Википедия

- (лат. compositio составление, связывание, сложение, соединение): В Викисловаре есть статья «композиция» Искусство Композиция (изобразительное искусство) организующий компонент художественной формы, придающий прои … Википедия

Книги

  • Дискретная математика. Основные теоретико-множественные конструкции. Часть VI , А. И. Широков. Пособие представляет собой VI часть раздела «Основные теоретикомножественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции,…

Пусть имеется некоторый набор K , состоящий из конечного числа булевых функций. Суперпозицией функций из этого набора называются новые функции, полученные с помощью конечного числа применения двух операций;

можно переименовать любую переменную, входящую в функцию из K ;

вместо любой переменной можно поставить функцию из набора K или уже образованную ранее суперпозицию.

Суперпозицию еще иначе называют сложной функцией.

Пример 7. 1. Если дана одна функция х |y (штрих Шеффера), то ее суперпозициями, в частности, будут следующие функции x|x , x| (x|y ), x| (y|z ) и т. д.

Замыканием набора функций из K называется множество всех суперпозиций. Класс функций K называется замкнутым , если его замыкание совпадает с ним самим.

Набор функций называется полным , если его замыкание совпадает со всеми логическими функциями. Иначе говоря, полный набор - это множество таких функций, через которые можно выразить все остальные булевы функции.

Неизбыточный полный набор функций называется базисом (“неизбыточный” означает, что если какую-то функцию удалить из набора, то этот набор перестанет быть полным).

Пример 7.2. Конъюнкция, дизъюнкция и отрицание являются полным набором (в этом убедились в разд. 5), но не являются базисом, так как это набор избыточен, поскольку с помощью правил де Моргана можно удалить конъюнкцию или дизъюнкцию. Любую функцию можно представить в виде полинома Жегалкина (разд. 6). Ясно, что функции конъюнкция, сложение по модулю 2 и константы 0 и 1 являются полным набором, но эти четыре функции также не являются базисом, поскольку 1+1=0, и поэтому константу 0 можно исключить из полного набора (для построения полиномов Жегалкина константа 0 необходима, поскольку выражение “1+1” не является полиномом Жегалкина).

Легко видеть, что одним из способов проверки полноты какого-то набора К является проверка того, что через функции из этого набора выражаются функции другого полного набора (можно проверить, что через функции из К можно выразить конъюнкцию и отрицание или дизъюнкцию и отрицание.

Существуют такие функции, что одна такая функция сама является базисом (здесь достаточно проверить только полноту, неизбыточность очевидна). Такие функции называются шефферовскими функциями. Это название связано с тем, что штрих Шеффера является базисом. Напомним, что штрих Шеффера определяется следующей таблицей истинности:

Так как очевидно , т. е. отрицание является суперпозицией штриха Шеффера, а дизъюнкция тогда , штрих Шеффера сам является базисом. Аналогично, стрелка Пирса является шефферовской функцией (студенты могут проверить это сами). Для функций 3-х или более переменных шефферовских функций очень много (конечно, выражение других булевых функций через шефферовскую функцию большого числа переменных сложно, поэтому в технике они редко используются).

Заметим, что вычислительное устройство чаще всего базируется на полном наборе функций (часто на базисах). Если в основе устройства лежат конъюнкция, дизъюнкция и отрицание, то для этих устройств важна проблема минимизации ДНФ; если в основе устройства лежат другие функции, то полезно уметь алгоритмически минимизировать выражения через эти функции.

Перейдем теперь к выяснению полноты конкретных наборов функций. Для этого перечислим 5 важнейших классов функций:

  • Т 0 - это набор всех тех логических функций, которые на нулевом наборе принимают значение 0 (Т 0 - это класс функций, сохраняющих 0);
  • Т 1 - это набор всех логических функций, которые на единичном наборе принимают значение 1 (Т 1 - это класс функций, сохраняющих единицу ) (заметим, что число функций от п переменных принадлежащих классам Т 0 и Т 1 равно 2 2n-1);
  • L - класс линейных функций т. е. функций, для которых полином Жегалкина содержит только первые степени переменных;
  • М - класс монотонных функций. Опишем класс этих функций более подробно. Пусть имеются 2 набора из п переменных: s1 = (x 1 , x 2 ,..., x n)

s 1 = (х 1 , х 2 , , х п ) и s 2 = (y 1 , y 2, , y п) . Будем говорить, что набор s 1 меньше набора s 2 (s 1 £ s 2 ), если все х i £ y i . Очевидно, что не все наборы из п переменных сравнимы между собой (например, при п = 2 наборы (0,1) и (1,0) не сравнимы между собой). Функция от п переменных называется монотонной , если на меньшем наборе она принимает меньшее или равное значение. Разумеется, эти неравенства должны проверяться только на сравнимых наборах. Понятно, что несравнимые наборы - это те, в которых есть некоторые координаты типа (0,1) в одном наборе и (1,0) в другом на соответствующих местах (в дискретной математике монотонные функции это только как бы “монотонно возрастающие функции”, “монотонно убывающие” функции здесь не рассматриваются).

Пример. В нижеследующей таблице функции f 1 , f 2 являются монотонными функциями, а функции f 3 , f 4 - нет.

Естественный порядок переменных обеспечивает тот факт, что если какой-то набор меньше другого набора, то он обязательно расположен в таблице истинности выше “большего” набора. Поэтому если в таблице истинности () вверху стоят нули , а затем единицы , то эта функция точно является монотонной . Однако возможны инверсии, т. е. единица стоит до каких-то нулей , но функция является все равно монотонной (в этом случае наборы, соответствующие “верхней” единице и “нижнему” нулю должны быть несравнимы ; можно проверить, что функция, задаваемая таблицей истинности при естественном порядке набора переменных (00010101), является монотонной);

Теорема . Классы функций Т 0 , Т 1 , L , M , S замкнуты .

Это утверждение следует непосредственно из определения самих этих классов, а также из определения замкнутости.

В теории булевых функций очень большое значение имеет следующая теорема Поста.

Теорема Поста . Для того чтобы некоторый набор функций K был полным, необходимо и достаточно, чтобы в него входили функции, не принадлежащие каждому из классов T 0 , T 1 , L , M , S .

Заметим, что необходимость этого утверждения очевидна, так как если бы все функции из набора К входили в один из перечисленных классов, то и все суперпозиции, а значит, и замыкание набора входило бы в этот класс и класс К не мог быть полным.

Достаточность этого утверждения доказывается довольно сложно, поэтому здесь не приводится.

Из этой теоремы следует довольно простой способ выяснения полноты некоторого набора функций. Для каждой из этих функций выясняется принадлежность к перечисленным выше классам. Результаты заносятся в так называемую таблицу Поста (в нашем примере эта таблица составлена для 4-х функций, причем знаком “+” отмечается принадлежность функции соответствующему классу, знак “-” означает, что функция в него не входит).

В соответствии с теоремой Поста набор функций будет полным тогда и только тогда, когда в каждом столбце таблицы Поста имеется хотя бы один минус. Таким образом, из приведенной таблицы следует, что данные 4 функции образуют полный набор, но эти функции не являются базисом. Из этих функций можно образовать 2 базиса: f 3 , f 1 и f 3 , f 2 . Полными наборами будут любые наборы содержащие, какой-либо базис.

Непосредственно из таблицы Поста следует, что число базисных функций не может быть больше 5. Нетрудно доказать, что на самом деле это число меньше или равно 4.

Соответствием G между множествами А и В называется подмножество . Если , то говорят, что b

соответствует а. Множество всех соответствующих элементу

Называется образом элемента а. Множество всех которым соответствует элемент , называется

прообразом элемента b .

Множество пар (Ь, а) таких, что называется обратным по

отношению к G и обозначается . Понятия образа и прообраза для

" G и взаимно обратны.

Примеры. 1) Поставим в соответствие натуральному числу п

множество действительных чисел . Образом числа 5

будет полуинтервал

(так обозначают наибольшее целое, меньшее или равное X ). Прообразом числа 5 при этом соответствии является бесконечное множество: полуинтервал .

В терминах замыкания можно дать другие определения замкнутости и полноты (эквивалентные исходным):

K- замкнутый класс, если K = [K];

K - полная система, если [K] = Р 2 .

Примеры.

* {0}, {1} - замкнутые классы.

* Множество функции одной переменной - замкнутый класс.

* - замкнутый класс.

* Класс {1, x+y} не является замкнутым классом.

Рассмотрим некоторые важнейшие замкнутые классы.

1. Т 0 - класс функций, сохраняющих 0.

Обозначим через Т 0 класс всех функций алгебры логики f(x 1 , x 2 , ... , x n), сохраняющих константу 0, то есть функций, для которых f(0, ... , 0) = 0.



Легко видеть, что есть функции, принадлежащие Т 0 , и функции, этому классу не принадлежащие:

0, x, xy, xÚy, x+y Î T 0 ;

Из того, что Ï T 0 следует, например, что нельзя выразить через дизъюнкцию и конъюнкцию.

Поскольку таблица для функции f из класса Т 0 в первой строке содержит значение 0, то для функций из Т 0 можно задавать произвольные значения только на 2 n - 1 наборе значений переменных, то есть

,

где - множество функций, сохраняющих 0 и зависящих от n переменных.

Покажем, что Т 0 - замкнутый класс. Так как xÎT 0 , то для обоснования замкнутости достаточно показать замкнутость относительно операции суперпозиции, поскольку операция замены переменных есть частный случай суперпозиции с функцией x.

Пусть . Тогда достаточно показать, что . Последнее вытекает из цепочки равенств

2. T 1 - класс функций, сохраняющих 1.

Обозначим через Т 1 класс всех функций алгебры логики f(x 1 , x 2 , ... , x n), сохраняющих константу 1, то есть функций, для которых f(1, ... , 1) = 1.

Легко видеть, что есть функции, принадлежащие Т 1 , и функции, этому классу не принадлежащие:

1, x, xy, xÚy, xºy Î T 1 ;

0, , x+y Ï T 1 .

Из того, что x + y Ï T 0 следует, например, что x + y нельзя выразить через дизъюнкцию и конъюнкцию.

Результаты о классе Т 0 тривиально переносятся на класс Т 1 . Таким образом, имеем:

Т 1 - замкнутый класс;

.

3. L - класс линейных функций.

Обозначим через L класс всех функций алгебры логики f(x 1 , x 2 , ... , x n), являющихся линейными:

Легко видеть, что есть функции, принадлежащие L , и функции, этому классу не принадлежащие:

0, 1, x, x+y, x 1 º x 2 = x 1 + x 2 + 1, = x+1 Î L;

Докажем, например, что xÚy Ï L .

Предположим противное. Будем искать выражение для xÚy в виде линейной функции с неопределенными коэффициентами:

При x = y = 0 имеем a=0,

при x = 1, y = 0 имеем b = 1,

при x = 0, y = 1 имеем g = 1,

но тогда при x = 1, y = 1 имеем 1Ú 1 ¹ 1 + 1, что доказывает нелинейность функции xÚy.

Доказательство замкнутости класса линейных функций совершенно очевидно.

Поскольку линейная функция однозначно определяется заданием значений n+1 коэффициента a 0 , ... , a n , число линейных функций в классе L (n) функций, зависящих от n переменных равно 2 n+1 .

.

4. S - класс самодвойственных функций.

Определение класса самодвойственных функций основано на использовании так называемого принципа двойственности и двойственных функций.

Функция , определяемая равенством , называется двойственной к функции .

Очевидно, что таблица для двойственной функции (при стандартной упорядоченности наборов значений переменных) получается из таблицы для исходной функции инвертированием (то есть заменой 0 на 1 и 1 на 0) столбца значений функции и его переворачиванием.

Легко видеть, что

(x 1 Ú x 2)* = x 1 Ù x 2 ,

(x 1 Ù x 2)* = x 1 Ú x 2 .

Из определения вытекает, что (f*)* = f, то есть функция f является двойственной к f*.

Пусть функция выражена с помощью суперпозиции через другие функции. Спрашивается, как построить формулу, реализующую ? Обозначим через = (x 1 , ... , x n) все различные символы переменных, встречающиеся в наборах .

Теорема 2.6. Если функция j получена как суперпозиция функций f, f 1 , f 2 , ... , f m , то есть

функция, двойственная к суперпозиции, есть суперпозиция двойственных функций.

Доказательство .

j*(x 1 ,...,x n) = ` f(`x 1 ,...,`x n) =

Теорема доказана. ð

Из теоремы вытекает принцип двойственности: если формула А реализует функцию f(x 1 , ... , x n), то формула, полученная из А заменой входящих в нее функций на двойственные им, реализует двойственную функцию f*(x 1 , ... , x n).

Обозначим через S класс всех самодвойственных функций из P 2:

S = {f | f* = f }

Легко видеть, что есть функции, принадлежащие S, и функции, этому классу не принадлежащие:

0, 1, xy, xÚy Ï S .

Менее тривиальным примером самодвойственной функции является функция

h(x, y, z) = xy Ú xz Ú yz;

используя теорему о функции, двойственной к суперпозиции, имеем

h*(x, y, z)= (x Ú y)Ù(x Ú z) Ù (y Ù z) = x y Ú x z Ú y z; h = h* ; h Î S.

Для самодвойственной функции имеет место тождество

так что на наборах и , которые мы будем называть противоположными, самодвойственная функция принимает противоположные значения. Отсюда следует, что самодвойственная функция полностью определяется своими значениями на первой половине строк стандартной таблицы. Поэтому число самодвойственных функций в классе S (n) функций, зависящих от n переменных, равно:

.

Докажем теперь, что класс S замкнут. Так как xÎS , то для обоснования замкнутости достаточно показать замкнутость относительно операции суперпозиции, поскольку операция замены переменных есть частный случай суперпозиции с функцией x. Пусть . Тогда достаточно показать, что . Последнее устанавливается непосредственно:

5. М - класс монотонных функций.

Прежде чем определять понятие монотонной функции алгебры логики, необходимо ввести отношение упорядоченности на множестве наборов ее переменных.

Говорят, что набор предшествует набору (или “не больше ”, или “меньше или равен ”), и применяют обозначение , если a i £ b i для всех i = 1, ... , n. Если и , то будем говорить, что набор строго предшествует набору (или “строго меньше”, или “меньше” набора ), и использовать обозначение . Наборы и называются сравнимыми, если либо , либо .В случае, когда ни одно из этих соотношений не выполняется, наборы и называются несравнимыми. Например, (0, 1, 0, 1) £ (1, 1, 0, 1), но наборы (0, 1, 1, 0) и (1, 0, 1, 0) несравнимы. Тем самым отношение £ (его часто называют отношением предшествования) является частичным порядком на множестве В n . Ниже приведены диаграммы частично упорядоченных множеств В 2 , В 3 и В 4 .




Введенное отношение частичного порядка - исключительно важное понятие, далеко выходящее за рамки нашего курса.

Теперь мы имеем возможность определить понятие монотонной функции.

Функция алгебры логики называется монотонной , если для любых двух наборов и , таких, что , имеет место неравенство . Множество всех монотонных функций алгебры логики обозначаетcя через М, а множество всех монотонных функций, зависящих от n переменных - через М (n) .

Легко видеть, что есть функции, принадлежащие M , и функции, этому классу не принадлежащие:

0, 1, x, xy, xÚy Î M;

x+y, x®y, xºy Ï M .

Покажем, что класс монотонных функций М - замкнутый класс. Так как xÎМ, то для обоснования замкнутости достаточно показать замкнутость относительно операции суперпозиции, поскольку операция замены переменных есть частный случай суперпозиции с функцией x.

Пусть . Тогда достаточно показать, что .

Пусть - наборы переменных, соответственно, функций j, f 1 , ... , f m , причем множество переменных функции j состоит из тех и только тех переменных, которые встречаются у функций f 1 , ... , f m . Пусть и - два набора значений переменной , причем . Эти наборы определяют наборы значений переменных , такие, что . В силу монотонности функций f 1 , ... , f m

и в силу монотонности функции f

Отсюда получаем

Число монотонных функций, зависящих от n переменных, точно неизвестно. Легко может быть получена оценка снизу:

где - есть целая часть от n/2.

Так же просто получается слишком завышенная оценка сверху:

Уточнение этих оценок - важная и интересная задача современных исследований.

Критерий полноты

Теперь мы в состоянии сформулировать и доказать критерий полноты (теорему Поста), определяющий необходимые и достаточные условия полноты системы функций. Предварим формулировку и доказательство критерия полноты несколькими необходимыми леммами, имеющими и самостоятельный интерес.

Лемма 2.7. Лемма о несамодвойственной функции.

Если f(x 1 , ... , x n)Ï S , то из нее путем подстановки функций x и `x можно получить константу.

Доказательство . Так как fÏS, то найдется набор значений переменных
=(a 1 ,...,a n) такой, что

f(`a 1 ,...,`a n) = f(a 1 ,...,a n)

Заменим аргументы в функции f:

x i заменяется на ,

то есть положим , и рассмотрим функцию

Тем самым мы получили константу (правда, неизвестно, какая это константа: 0 или 1). ð

Лемма 2.8. Лемма о немонотонной функции.

Если функция f(x 1 ,...,x n) немонотонна, f(x 1 ,...,x n) Ï M, то из нее путем замены переменных и подстановки констант 0 и 1 можно получить отрицание.

Доказательство . Так как f(x 1 ,...,x n) Ï M, то найдутся наборы и значений ее переменных, , , такие что , причем хотя бы для одного значения i имеет место a i < b i . Выполним следующую замену переменных функции f:

x i заменим на

После такой подстановки получим функцию одной переменной j(x), для которой имеем:

Это означает, что j(x)=`x. Лемма доказана. ð

Лемма 2.9. Лемма о нелинейной функции.

Если f(x 1 ,...,x n) Ï L , то из нее путем подстановки констант 0, 1 и использования функции `x можно получить функцию x 1 &x 2 .

Доказательство . Представим f в виде ДНФ (например, совершенной ДНФ) и воспользуемся соотношениями:

Пример . Приведем два примера применения указанных преобразований.

Таким образом, функция, записанная в дизъюнктивной нормальной форме, после применения указанных соотношений, раскрытия скобок и несложных алгебраических преобразований переходит в полином по mod 2 (полином Жегалкина):

где A 0 константа, а А i - конъюнкция некоторых переменных из числа x 1 ,..., x n , i = 1, 2, ... , r.

Если каждая конъюнкция A i состоит лишь из одной переменной, то f - линейная функция, что противоречит условию леммы.

Следовательно, в полиноме Жегалкина для функции f найдется член, в котором содержится не менее двух сомножителей. Без ограничения общности можно считать, что среди этих сомножителей присутствуют переменные x 1 и x 2 . Тогда полином можно преобразовать следующим образом:

f = x 1 x 2 f 1 (x 3 ,..., x n) + x 1 f 2 (x 3 ,..., x n) + x 2 f 3 (x 3 ,..., x n) + f 4 (x 3 ,..., x n),

где f 1 (x 3 ,..., x n) ¹ 0 (в противном случае в полином не входит конъюнкция, содержащая конъюнкцию x 1 x 2).

Пусть (a 3 ,...,a n) таковы, что f 1 (a 3 ,...,a n) = 1. Тогда

j(x 1 ,x 2) = f(x 1 ,x 2 , a 3 ,...,a n) = x 1 x 2 +ax 1 +bx 2 +g ,

где a, b, g - константы, равные 0 или 1.

Воспользуемся операцией отрицания, которая у нас имеется, и рассмотрим функцию y(x 1 ,x 2), получающуюся из j(x 1 ,x 2) следующим образом:

y(x 1 ,x 2) = j(x 1 +b, x 2 +a)+ab+g.

Очевидно, что

y(x 1 ,x 2) =(x 1 +b)(x 2 +a)+a(x 1 +b)+b(x 2 +a)+g+ab+g = x 1 x 2 .

Следовательно,

y(x 1 ,x 2) = x 1 x 2 .

Лемма доказана полностью.ð

Лемма 2.10. Основная лемма критерия полноты.

Если в классе F={ f } функций алгебры логики содержатся функции, не сохраняющие единицу, не сохраняющие 0, несамодвойственные и немонотонные:

то из функций этой системы операциями суперпозиции и замены переменных можно получить константы 0, 1 и функцию .

Доказательство . Рассмотрим функцию . Тогда

.

Возможны два случая последующих рассмотрений, в дальнейшем изложении обозначенные как 1) и 2).

1). Функция на единичном наборе принимает значение 0:

.

Заменим все переменные функции переменной x . Тогда функция

есть , ибо

и .

Возьмем несамодвойственную функцию . Так как функцию мы уже получили, то по лемме о несамодвойственной функции (лемма 2.7. ) из можно получить константу. Вторую константу можно получить из первой, используя функцию . Итак, в первом рассмотренном случае получены константы и отрицание. . Второй случай, а вместе с ним и основная лемма критерия полноты, полностью доказаны. ð

Теорема 2.11. Критерий полноты систем функций алгебры логики (теорема Поста).

Для того, чтобы система функций F = {f i }была полной, необходимо и достаточно, чтобы она целиком не содержалась ни в одном из пяти замкнутых классов T 0 , T 1 , L , S, M, то есть для каждого из классов T 0 , T 1 , L , S, Mв F найдется хотя бы одна функция, этому классу не принадлежащая.

Необходимость . Пусть F - полная система. Допустим, что F содержится в одном из указанных классов, обозначим его через K, т.е. F Í K. Последнее включение невозможно, так как K - замкнутый класс, не являющийся полной системой.

Достаточность . Пусть система функций F = {f i }целиком не содержится ни в одном из пяти замкнутых классов T 0 , T 1 , L , S, M. Возьмем в Fфункции:

Тогда на основанииосновной леммы (лемма 2.10 ) из функции не сохраняющей 0, функции не сохраняющей 1, несамодвойственной и немонотонной функций можно получить константы 0, 1 и функцию отрицание :

.

На основании леммы о нелинейной функции (лемма 2.9 ) из констант, отрицания и нелинейной функции можно получить конъюнкцию:

.

Система функций - полная система по теореме о возможности представления любой функции алгебры логики в виде совершенной дизъюнктивной нормальной формы (заметим, что дизъюнкция может быть выражена через конъюнкцию и отрицание в виде ).

Теорема доказана полностью. ð

Примеры.

1. Покажем, что функция f(x,y) = x|y образует полную систему. Построим таблицу значений функции x½y:

x y x|y

f(0,0) = 1, следовательно, x | yÏT 0 .

f(1,1) = 0, следовательно, x | yÏT 1 .

f(0,0) = 1, f(1,1) = 0, следовательно, x | yÏM .

f(0,1) = f(1,0) = 1, - на противоположных наборах x | y принимает одинаковые значения, следовательно x | yÏS .

Наконец, , что означает нелинейность функции
x | y.

На основании критерия полноты можно утверждать, что f(x,y) = x | y образует полную систему. ð

2. Покажем, что система функций образует полную систему.

Действительно, .

Тем самым среди функций нашей системы найдены: функция, не сохраняющая 0, функция, не сохраняющая 1, несамодвойственная, немонотонная и нелинейная функции. На основании критерия полноты можно утверждать, что система функций образует полную систему.ð

Таким образом мы убедились, что критерий полноты дает конструктивный и эффективный способ выяснения полноты систем функций алгебры логики.

Сформулируем теперь три следствия из критерия полноты.

Следствие 1 . Всякий замкнутый класс Kфункций алгебры логики, не совпадающий со всем множеством функций алгебры логики (K¹P 2), содержится по крайней мере в одном из построенных замкнутых классов.

Определение. Замкнутый класс K называется предполным , если K неполный и для любой функции fÏ Kкласс K È {f}- полный.

Из определения следует, что предполный класс является замкнутым.

Следствие 2. В алгебре логики существует только пять предполных классов, а именно:T 0 ,T 1 , L , M , S .

Для доказательства следствия нужно проверить только то, что ни один из этих классов не содержится в другом, что подтверждается, например, следующей таблицей принадлежности функций различным классам:

T 0 T 1 L S M
+ - + - +
- + + - +
- - + + -

Следствие 3. Из всякой полной системы функций можно выделить полную подсистему, содержащую не более четырех функций.

Из доказательства критерия полноты следует, что можно выделить не более пяти функций. Из доказательства основной леммы (лемма 2.10 ) следует, что либо несамодвойственна, либо не сохраняет единицу и не монотонна. Поэтому нужно не более четырех функций.

Лучшие статьи по теме